
Elegant Integrations with Ballerina Swan Lake

Jun 2024

2

Talk Outline

Our Journey with Programming Languages

Ballerina Language

● Data-Oriented Design
● Concurrency
● Structural Types

Demo

2

3

Apache Synapse
XML based DSL for specifying service mediation.
Community project, heavily contributed by WSO2.

Siddhi
Stream Processor with a Streaming SQL

Jaggery Runtime
JS runtime written in Java.

Our Journey with Programming Languages
WSO2 enables thousands of enterprises, including hundreds of the world’s largest corporations, top universities, and
governments, to drive their digital transformation journeys—executing more than 18 trillion transactions and managing
more than 500 million identities annually.

Integration Studio
Graphical editor for Apache Synapse

4

● Started out as Synapse replacement language back in late 2016.
Inspired by sequence diagrams and graphical editing.

● Initial implementation as AST interpreted language (2017)

● Internal vm (BVM) with internal ByteCode (late 2017)

● Backend/frontend separation via BIR. JVM bytecode as the backend
(late 2018).

● Swan Lake version GA release in , with major improvements and
extensive set of standard libraries and connectors (early 2022).

● Continues update to Swan Lake version. Currently update 9.

Timeline Of

Data oriented
Type-safe, declarative processing of JSON,
XML, and tabular data with
language-integrated queries.

Concurrent
Easy and efficient concurrency with
sequence diagrams and
language-managed threads without the
complexity of asynchronous functions.

Features of Ballerina

type User record { int id; string name; };
…
User manu = { id: 92874, name: "manuranga" }

http:Client hello = check new ("http://hello.com");
MyGreeting greeting = check hello->get("/world");

Also see: start, wait and workers

5

Structurally typed
Uses structural types with support for
openness for static typing within a program
and for describing service interfaces.

type Customer record {|
 int id;
 string name;
 int account;
|};
…
Customer customer = { … };
User user = customer;
addUser(user)

Rich set of built in data types

Data litrals for json (more generally records
and lists) and xml

Data independent form behavior

Table type for efficiently look up data

Immutable values

Values are comparable

Features of Ballerina - Data oriented

6

json person = { id: 92874, name: "manu" };
xml book = xml`<book>The Lost World</book>`;

type User record { int id; string name; };
type Point3D [int, int, int];

boolean, int, float, string, array, tuple, map, record
decimal, xml (byte, char, json)

io:println([1, "hello"] == [1, "hello"]);
io:println([1, "hello"] < [2, "hello"]);

int[] & readonly arr = [1, 2, 3];

employeesById.put({ id: 92874, name: "manu" });
io:println(employeesById[92874]);

Concurrency in Ballerina is enabled by strands, which are lightweight threads.

Concurrent by default - Below code will block the strand without blocking the thread, no special keyword
(like await) needed.

Features of Ballerina - Concurrent

7

http:Client hello = check new ("http://hello.com");
MyGreeting greeting = check hello->get("/world");

Works and start keyword can be used to start strands explicitly

future<int> resultA = start calculateA();
future<int> resultB = start calculateB();
int|error result = wait resultA | resultB;

Strands can be started and waited apone in functions. There is no need for special 'async' functions, thus
avoiding function colouring issues.

Ballerina has a unique type system based on set theory.

Features of Ballerina - Structurally typed

8

type Colour "RED"|"GREEN"|"BLUE";
…
Colour? c = "RED";

type User record { string name; };
type Employee record { int id; string name; };
…
Employee emp = …;
User user = emp;

Think of type as a set and subtype as a subset.

New types can be constructed using set operation (union and intersect) on existing types.

Features of Ballerina - Structurally typed

9

int[] & readonly arr = [1, 2, 3];

Mathematically sound - based on the works of Giuseppe Castagna

Since types can work as schemas when working defining network interfaces.

service / on ln {

 resource function post calc(CalcReq args) returns CalcResp {

 }
}

import ballerina/http;

type ITunesAlbumData record {

 string collectionViewUrl;

 string collectionName;

};

type ITunesResult record {

 ITunesAlbumData[] results;

};

type Album record {|

 string url;

 string name;

|};

service /pickagift on new http:Listener(9090) {

 resource function get albums(string artist) returns Album[]|error {

 http:Client iTunes = check new ("https://itunes.apple.com/");

 ITunesResult search = check iTunes->get(searchUrl(artist));

 return from ITunesAlbumData a in search.results

 select {name: a.collectionName, url : a.collectionViewUrl};

 }

}

function searchUrl(string artist) returns string {

 return "search?term=" + artist + "&entity=album&attribute=allArtistTerm";

}

Demo

Thank you
Please give us a try : https://ballerina.io/downloads/
Follow us on : Discord community and https://twitter.com/ballerinalang
Star us on GitHub : https://github.com/ballerina-platform/ballerina-lang

https://ballerina.io/downloads/
https://discord.gg/ballerinalang
https://twitter.com/ballerinalang
https://github.com/ballerina-platform/ballerina-lang

