
September 2024
Modern Software Development Practices

1

Hello!

Asma Jabir
asmaj@wso2.com | Technical Lead | @ballerinalang | WSO2

Dilhasha Nazeer
dilhasha@wso2.com | Associate Technical Lead | @ballerinalang | WSO2

2

mailto:anjanas@wso2.com

About this Session

3

Coming Up

Introduction to Software Development

Fundamentals of API

API driven Development

Hands-On Session

4

Prerequisites

Ballerina

VSCode

VSCode extension for Ballerina

5

Introduction to Software Development

6

Evolution of Software Development

Machine Level
Programming

Structured
Programming

Object
Oriented

Programming

Agile &
Iterative

Development

Automation &
Cloud Native
Development

Source:
https://www.unimedia.tech/reviving-old-
programming-languages-modern-softwa
re-development/

Source:
https://www.linkedin.com/pulse/using-de
sign-patterns-oop-improve-code-structu
re-amr-saafan/

Source:
https://www.saturdayeveningpost.com/2
023/06/cartoons-ok-computer/

Source:
https://www.istockphoto.com/illustration
s/agile-iteration

Source: digitalmediaworld.tv

(1940s - 1960s) (1970s - 1980s) (1980s - 1990s) (2000s - 2010s) (2010s - Present)

7

https://www.istockphoto.com/illustrations/agile-iteration
https://www.istockphoto.com/illustrations/agile-iteration

Agile Development Practices

Agile and devops practices
● Iterative Development

● Collaboration

● Continuous Feedback

● Customer-Centric

Source :
https://targettrend.com/agile-methodology-meaning-advantagesdisadv
antages-more

8

DevOps Practices

Agile and
devops practices● Continuous Integration (CI)

● Continuous Delivery (CD)

● Infrastructure as Code (IaC)

● Monitoring and Feedback

Source : https://www.opsmx.com/blog/what-is-a-ci-cd-pipeline/

9

Microservices

Microservice architecture is an architectural style that structures an

application as a collection of services that are:

● Independently deployable

● Loosely coupled

● Organized around business capabilities

● Owned by a small team

10

Monolithic vs. Microservice Architecture

Users

Reviews

Users

Products

Products

Reviews

Monolithic Architecture Microservice Architecture
11

Fundamentals of API

12

What is an API?

13

How does an API work?

● Client and Server

Client: The application or user making the request.
Server: The system/service that provides the data or functionality.

● Requests and Responses
○ Common request methods: GET, POST, PUT, DELETE
○ Response: Includes the requested data

 or confirmation that an action was performed.

14

How does an API work?

● Endpoints : URLs where the client can make requests

● Data Format : Data is exchanged mostly in JSON or XML

● Authentication: Client specific ‘API Key’

● Rate Limiting: to avoid overloading the server

● Error Handling : Common codes like 404, 400 and 500 are used

15

API Protocols

16

● Most widely used architectural style leverages HTTP protocol

● Uses the concept of resources

● Resources can be accessed via verbs and resource paths

● Each resource has a standard format to represent data; server

sends - client understands

REST (REpresentational State Transfer)

17

● Relatively new protocol developed by Facebook
● Fast adaptation from the major companies
● Query language for APIs
● Data is structured as a hierarchical structure
● Has a single endpoint
● Clients can request exactly what they want, server responds with exactly what

was requested

GraphQL

18

API-Driven Development

19

APIs are designed and developed first before building the application

Key Benefits:

● Modular Architecture
● Faster Development
● Scalability
● Improved Collaboration

https://blog.restcase.com/an-api-first-development-approach/20

Frontend Development

● Languages & Technologies

HTML

CSS

JavaScript

Frameworks & Libraries: React.js, Angular

● Responsive Design
Ensuring the website looks good and functions well on all devices

21

Frontend Development

● UI/UX (User Interface/User Experience)

Intuitive and accessible user interface

● Performance Optimization
Minimizing assets, lazy loading

● Testing
Using Jest, Cypress like tools to verify the functionality

22

Backend Development

● Programming Languages

Go, Python, Java

Ballerina

Frameworks : Spring Boot, Nest.js

● Databases
SQL - relational databases like H2, MySQL, MSSQL, PostgreSQL

NoSQL - MongoDB, Redis

23

Backend Development

● Server & hosting

On premises servers

Cloud providers like AWS, Azure, GCP

Containerized environments like Docker, Kubernetes

● Observability & Monitoring

Use of monitoring tools (e.g., Prometheus, Grafana)

Log management (e.g., ELK stack, Splunk)

24

Frontend and Backend Collaboration

● Clear Communication

● API Design

● Agile Workflows

● Agreements on Standards

● Testing

● Performance Optimization

https://www.guvi.in/blog/interaction-between-frontend-and-backend/ 25

Real-world Examples

26

Sharing a post on Facebook

27

28

Smartchips on GoogleDocs

Google Calendar API

Gmail API

Google Places API

29

Hands-on

30

● Based on Microservice Architecture

○ Menu Service

○ Order Service

● APIs to
○ Create new orders
○ View all orders
○ View details of a specific order
○ View all food items in the menu

We will be building an order application…

31

32

In-memory
datastore

In-memory
datastore

Application Architecture

Ballerina Swan Lake
● Fully open-source programming language, powered by WSO2

● 6+ years of effort with 300+ contributors

● Cloud-native programming language optimized for integration

● Both textual syntax and graphical form

● Network Oriented Programming (DOP) paradigm

33

34

Ballerina is a full platform

https://x.com/sameerajayasoma/status/1813314829974950061

35

● VSCode plugin

○ Source and graphical editing

○ Debugging

● Tools for working with various protocols (REST, GraphQL, gRPC)

● Generate API documentation & test framework

● Ballerina standard library and extended library

● Ballerina Central (https://central.ballerina.io/)

○ Module sharing platform

Ballerina is a full platform

https://central.ballerina.io/

Let’s code

Source code:
https://github.com/azinneera/hotel_order_service

36

Questions?

37

Ballerina community

● Ballerina is an open source project
https://github.com/ballerina-platform/ballerina-lang/

● Seeking open source contributors
⦿ Ballerina is available for hacktoberfest
⦿ Has good first issues for external contributors

● Ballerina student engagement program
https://ballerina.io/community/student-program/

38

https://github.com/ballerina-platform/ballerina-lang/
https://ballerina.io/hacktoberfest/
https://github.com/orgs/ballerina-platform/projects/369
https://ballerina.io/community/student-program/

Find out more…
● Ballerina documentation

○ Ballerina use cases : Microservices
■ ballerina.io/usecases/microservices/

○ Ballerina by example
■ ballerina.io/learn/by-example/

○ API Documentation
■ https://lib.ballerina.io/

● Join the Ballerina community

ballerinalang WSO2 Collective @ballerinalang ballerina-lang

39

https://ballerina.io/usecases/microservices/
https://ballerina.io/learn/by-example/
https://lib.ballerina.io/
https://discord.gg/ballerinalang
https://stackoverflow.com/collectives/wso2
https://twitter.com/ballerinalang
https://github.com/ballerina-platform/ballerina-lang

Inter-university Ballerina Hackathon

🔗 Register Now:
https://lnkd.in/gmCdiBim

Organized by the IEEE Student Branch of University of Moratuwa 40

https://lnkd.in/gmCdiBim

Thank you!

41

