
September 2024
Modern Software Development Practices

1



Hello!

Asma Jabir
asmaj@wso2.com | Technical Lead | @ballerinalang | WSO2

Dilhasha Nazeer
dilhasha@wso2.com | Associate Technical Lead | @ballerinalang | WSO2

2

mailto:anjanas@wso2.com


About this Session

3



Coming Up

Introduction to Software Development

Fundamentals of API

API driven Development

Hands-On Session
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Prerequisites

Ballerina

VSCode

VSCode extension for Ballerina
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Introduction to Software Development
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Evolution of Software Development

Machine Level 
Programming

Structured 
Programming

Object 
Oriented 

Programming

Agile & 
Iterative 

Development

Automation & 
Cloud Native 
Development

Source: 
https://www.unimedia.tech/reviving-old-
programming-languages-modern-softwa
re-development/

Source: 
https://www.linkedin.com/pulse/using-de
sign-patterns-oop-improve-code-structu
re-amr-saafan/

Source: 
https://www.saturdayeveningpost.com/2
023/06/cartoons-ok-computer/

Source: 
https://www.istockphoto.com/illustration
s/agile-iteration

Source: digitalmediaworld.tv

(1940s - 1960s) (1970s - 1980s) (1980s - 1990s) (2000s - 2010s) (2010s - Present)
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Agile Development Practices

Agile and devops practices
● Iterative Development

● Collaboration

● Continuous Feedback

● Customer-Centric

Source : 
https://targettrend.com/agile-methodology-meaning-advantagesdisadv
antages-more
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DevOps Practices

Agile and 
devops practices● Continuous Integration (CI)

● Continuous Delivery (CD)

● Infrastructure as Code (IaC)

● Monitoring and Feedback

Source : https://www.opsmx.com/blog/what-is-a-ci-cd-pipeline/
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Microservices

Microservice architecture is an architectural style that structures an 

application as a collection of services that are:

● Independently deployable

● Loosely coupled

● Organized around business capabilities

● Owned by a small team
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Monolithic vs. Microservice Architecture

Users

Reviews

Users

Products

Products

Reviews

Monolithic Architecture Microservice Architecture
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Fundamentals of API
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What is an API?
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How does an API work?

● Client and Server

Client: The application or user making the request.
Server: The system/service that provides the data or functionality.

● Requests and Responses
○ Common request methods: GET, POST, PUT, DELETE
○ Response:  Includes the requested data 

    or confirmation that an action was performed.
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How does an API work?

● Endpoints : URLs where the client can make requests

● Data Format : Data is exchanged mostly in JSON or XML

● Authentication: Client specific ‘API Key’ 

● Rate Limiting: to avoid overloading the server

● Error Handling : Common codes like 404, 400 and 500 are used
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API Protocols

16



● Most widely used architectural style leverages HTTP protocol

● Uses the concept of resources

● Resources can be accessed via verbs and resource paths

● Each resource has a standard format to represent data; server 

sends - client understands

REST (REpresentational State Transfer)
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● Relatively new protocol developed by Facebook
● Fast adaptation from the major companies
● Query language for APIs
● Data is structured as a hierarchical structure
● Has a single endpoint
● Clients can request exactly what they want, server responds with exactly what 

was requested

GraphQL
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API-Driven Development
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APIs are designed and developed first before building the application

Key Benefits:

● Modular Architecture
● Faster Development
● Scalability
● Improved Collaboration

https://blog.restcase.com/an-api-first-development-approach/20



Frontend Development

● Languages & Technologies

HTML

CSS

JavaScript

Frameworks & Libraries: React.js, Angular

● Responsive Design
Ensuring the website looks good and functions well on all devices
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Frontend Development

● UI/UX (User Interface/User Experience)

Intuitive and accessible user interface

● Performance Optimization
Minimizing assets, lazy loading

● Testing
Using Jest, Cypress like tools to verify the functionality
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Backend Development

● Programming Languages

Go, Python, Java

Ballerina

Frameworks : Spring Boot, Nest.js

● Databases
SQL - relational databases like H2, MySQL, MSSQL, PostgreSQL

NoSQL - MongoDB, Redis
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Backend Development

● Server & hosting

On premises servers

Cloud providers like AWS, Azure, GCP

Containerized environments like Docker, Kubernetes

● Observability & Monitoring

Use of monitoring tools (e.g., Prometheus, Grafana)

Log management (e.g., ELK stack, Splunk) 

24



Frontend and Backend Collaboration

● Clear Communication

● API Design

● Agile Workflows

● Agreements on Standards

● Testing

● Performance Optimization

https://www.guvi.in/blog/interaction-between-frontend-and-backend/ 25



Real-world Examples
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Sharing a post on Facebook
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Smartchips on GoogleDocs

Google Calendar API

Gmail API

Google Places API
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Hands-on
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● Based on Microservice Architecture

○ Menu Service  

○ Order Service

● APIs to
○ Create new orders
○ View all orders
○ View details of a specific order
○ View all food items in the menu

We will be building an order application…
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In-memory 
datastore

In-memory 
datastore

Application Architecture



Ballerina Swan Lake
● Fully open-source programming language, powered by WSO2

● 6+ years of effort with 300+ contributors 

● Cloud-native programming language optimized for integration

● Both textual syntax and graphical form

● Network Oriented Programming (DOP) paradigm
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Ballerina is a full platform

https://x.com/sameerajayasoma/status/1813314829974950061



35

● VSCode plugin

○ Source and graphical editing

○ Debugging

● Tools for working with various protocols (REST, GraphQL, gRPC)

● Generate API documentation  & test framework

● Ballerina standard library and extended library

● Ballerina Central (https://central.ballerina.io/)

○ Module sharing platform

Ballerina is a full platform

https://central.ballerina.io/


Let’s code

Source code: 
https://github.com/azinneera/hotel_order_service
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Questions?
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Ballerina community

● Ballerina is an open source project 
https://github.com/ballerina-platform/ballerina-lang/

● Seeking open source contributors
⦿ Ballerina is available for hacktoberfest
⦿ Has good first issues for external contributors

● Ballerina student engagement program
https://ballerina.io/community/student-program/
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Find out more…
● Ballerina documentation

○ Ballerina use cases : Microservices
■ ballerina.io/usecases/microservices/

○ Ballerina by example
■ ballerina.io/learn/by-example/

○ API Documentation
■ https://lib.ballerina.io/

● Join the Ballerina community

ballerinalang WSO2 Collective @ballerinalang ballerina-lang
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Inter-university Ballerina Hackathon

🔗 Register Now:
https://lnkd.in/gmCdiBim

Organized by the IEEE Student Branch of University of Moratuwa 40

https://lnkd.in/gmCdiBim


Thank you!
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