
Modern Compiler Trends: Insights from the Ballerina
Compiler Hasitha Aravinda | hasitha@wso2.com

Architect - WSO2

1

mailto:hasitha@wso2.com

Why Are You Studying Compiler
Theory?

2

Why Might You Build or Work on
a Compiler in the Future?

3

What Defines a Compiler Today?

4

Modern Compilers Are No
Longer Standalone Applications

5

Compiler Ecosystem

○ IDEs. i.e. VSCode, IntelliJ Idea
○ Code Scanners

○ Security Scanners:
○ Linters, Spot Bug, Sonar Scan, Check Style

○ Tools
○ Code Formatters, Code Visualizers, Artifact Generators, Report Generators

○ Package Management System
○ Cross-Compilers

and many more…

6

Modern Compiler Trends

7

LSP
Language Server Protocols

8

LSP

○ Created by Microsoft
○ Standardize the protocol for how language development tools

communicate with each other.
○ Encourage reusability.
○ Features

○ Auto complete
○ Go to definition
○ Documentation on hover
○ Refactoring

and many more…

9

LSP

Credits: https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

10

https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

LSP

Credits: https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

11

https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

Ballerina LSP

Credits: https://medium.com/ballerina-techblog/practical-guide-for-the-language-server-protocol-3091a122b750

12

https://medium.com/ballerina-techblog/practical-guide-for-the-language-server-protocol-3091a122b750

WebAssembly (Wasm)

13

Wasm
● Binary Instruction Format: Wasm is a binary instruction format designed for a

stack-based virtual machine.
● Compilation Target: It serves as a portable target for compiling high-level languages

like C, C++, and Rust, enabling them to run on the web.
● Performance: Provides near-native execution speed, making it suitable for

performance-critical applications such as games and complex UIs.
● Security: Designed to maintain the security guarantees of the web, ensuring safe

execution within a sandboxed environment in web browsers.
● Platform Independence: Wasm is platform-independent, facilitating consistent

behavior across different systems and devices.

14

Examples
● Run Linux or other Operating Systems in your browser!

○ https://bellard.org/jslinux/
● Web AutoCad

○ https://web.autocad.com/
● RustPython

○ https://rustpython.github.io/demo/
● More Applications: https://madewithwebassembly.com/

15

https://bellard.org/jslinux/
https://web.autocad.com/
https://rustpython.github.io/demo/
https://madewithwebassembly.com/

AI and Machine Learning

16

AI and Machine Learning

● Multiple Areas
○ Context aware completion
○ Bug detection
○ Code optimization
○ Natural language to Code
○ Personalization

Tools

○ VSCode Copilot
○ https://cursor.sh/
○ OpenAI's ChatGPT and APIs

Many more
17

https://cursor.sh/

Cloud Based Development

18

Cloud Based Development

● Developer platform as a service
● Cloud compilers as a service

● Advantages
○ Accessibility, Collaboration, Scalability, Reduced Hardware Cost

● Disadvantages
○ Internet dependency, Security, Limited features, Performance, Cost over time.

● Products
○ Github Actions
○ Github Codespaces
○ AWS Cloud9
○ WSO2 Choreo

19

Other Trends

● Cross-Language Interoperability
● DSL
● Quantum Computing Language Development
● Adaptive Optimization
● Energy Efficient
● Secure Compilation

and more …

20

Extending Ballerina Compiler

21

Compilation Phases As Discussed In The Dragon Book

22

Ballerina Compiler - Compilation Phases

23

Feature Aware Mini Phases

● Rather than having single monolithic phase, we break phases into small
phases based on requirements

● Semantic Analysis
○ Constant Analysis - resolving compile time constants
○ Symbol Enter - resolving module level constructs, types, variables, functions,

etc.
○ Worker Analysis - resolving worker(concurrent constructs) interactions
○ Semantic Analysis* - resolving statements
○ Type Checker - resolving expressions
○ Code Analysis - resolving reachability
○ Isolate Analysis - checking concurrency.

and more.

24

Interutable Phases

● Redesign Phases such that, we can tell upto which point compilation
should run.

● Introduced a compilation phase runner to manage the compilation
requests.

25

Reusable Phases and Results

● Redesign phases such that, result of each phase can be reuse.
● Introduced Compiler APIs.
● Use Generated intermediate code (BIR) as the lowered version.

26

Use Cases

27

Use Case 1: Supporting Multiple Modules

● Package is a logical source code grouping.
● Developers compiles a project (using CLI).
● A package contains one or more ballerina modules.
● Modules are reusable components. i.e import ballerina/http
● A module is Ballerina's unit of compilation (CompilationUnit).

○ Compiler phases run against a module.
● Package Structure

➢ Parent module
➢ Zero or More sub Modules

● Modules can have inter-dependencies, but no cyclic.
● One executable per package, that is for the parent module.

28

Use Case 1: Supporting Multiple Modules

29

Use Case 1: Supporting Multiple Modules

Example: ballerina/graphql package

● graphql
● graphql.dataloader
● graphql.subgraph

Problems we have to solve.

● Multiple compilation units ⇒ Multiple compilations
● Decide compilation order
● Reusable Symbol Table Entries
● Single executable ⇒ Merge compilation results.

30

https://github.com/ballerina-platform/module-ballerina-graphql/tree/master/ballerina

Use Case 1: Supporting Multiple Modules

Our Solution

● Use the syntax API to get list of import
statements for each module.

● Use this data build the dependency graph
● Execute the compilation phases upto BIR

generation, from bottom to top of the
dependency graph.

● Reuse BIRs of compiled modules
● At the parent module, execute full

compilation to get the executable.

31

Use Case 2: VSCode Show Diagnostics

32

function foo() {
int a = 10;
int b = <cursor>

}

Use Case 3: VSCode Code Completion

33

Use Case 4: Compiler Extensions

● Extend language semantics
● Kinds

○ Validate Code
○ Modify Code
○ Generate New Code and Artifacts

● Examples
○ Code Validation

■ Http resource function can have only certain parameters.
■ Validate annotation attachments.

○ Code Modifications
■ Attached OpenAPI specification as attachment.

○ Code Generation
■ Generate docker and k8s artifacts.

34

Use Case 5: Visual Features

Architectural design view - Services

Use Case 5: Visual Features

Architectural design view - Resources

Use Case 5: Visual Features

Architectural design view - Types

Use Case 5: Visual Features

Service designing

Use Case 5: Visual Features

Data mapping

Use Case 5: Visual Features

Data persistence

Use Case 5: Visual Features

Text and graphical syntax parity

Key Lessons from Developing Ballerina Lang
● It is a Platform
● Continuous Adaptation
● Incremental vs. Radical Change
● User-Centric Development

42

Find out more…

● Learn Ballerina
○ Learn pages
○ Ballerina by example
○ Ballerina VS Code extension
○ Ballerina training video series
○ Ballerina certification

● Join the Ballerina community

43

ballerinalang Tag : ballerina @ballerinalang ballerina-lang

https://ballerina.io/learn/
https://ballerina.io/learn/by-example/
https://ballerina.io/learn/vs-code-extension/
https://www.youtube.com/playlist?list=PL7JOecNWBb0LfllJWrKpu95tu0HQBI2of
https://wso2.com/training/certification/certified-ballerina-developer-swan-lake/
https://discord.gg/ballerinalang
https://stackoverflow.com/questions/tagged/ballerina
https://twitter.com/ballerinalang
https://github.com/ballerina-platform/ballerina-lang

Questions?

