
Compiler Construction Insights from the Ballerina Language

September 2023

Swan Lake

2

Lecture Outline
● Evolution of Ballerina Compiler
● Current structure of Ballerina Compiler
● Staged approach and intermediate representations
● JVM backend experience

○ Demo
● LLVM backend experience

2

3

Apache Synapse
XML based DSL for specifying service mediation.
Community project, heavily contributed by WSO2.

Integration Studio
Graphical editor for Apache Synapse

Jaggery Runtime
JS runtime written in Java.

WSO2’s history in languages
WSO2 enables thousands of enterprises, including hundreds of the world’s largest corporations, top universities, and
governments, to drive their digital transformation journeys—executing more than 18 trillion transactions and managing
more than 500 million identities annually.

Siddhi
Cloud native stream processor

4

● Started out as Synapse replacement language back in late 2016.
Inspired by sequence diagrams and graphical editing.

● Initial implementation as AST interpreted language (2017)

● Internal vm (BVM) with internal ByteCode (late 2017)

● Backend/frontend separation via BIR. JVM bytecode as the backend
(late 2018).

● Swan Lake version GA release in , with major improvements and
extensive set of standard libraries and connectors (early 2022).

● Continuous updates to Swan Lake version. Currently on update 8.

Evolution of

Compiler
Swan Lake

Data oriented
Type-safe, declarative processing of JSON,
XML, and tabular data with
language-integrated queries.

Concurrent
Easy and efficient concurrency with
sequence diagrams and
language-managed threads without the
complexity of asynchronous functions.

Graphical
Programs have both a textual syntax and
an equivalent graphical form based on
sequence diagrams.

Features of Ballerina

type User record { int id; string name; };
…
User manu = { id: 92874, name: "manuranga" }

http:Client hello = check new ("http://hello.com");
MyGreeting greeting = check hello->get("/world");

Also see: start, wait and workers

5

6

Features of Ballerina
Flexibly typed
Uses structural types with support for
openness for static typing within a program
and for describing service interfaces.

Reliable, maintainable
Explicit error handling, static types, and
concurrency safety, combined with a
familiar, readable syntax make programs
reliable and maintainable.

Cloud native
Network primitives in the language make it
simpler to write services and run them in
the cloud.

6

type Customer record {|
 int id;
 string name;
 int account;
|};
…
Customer customer = { … };
User user = customer;
addUser(user);

> bal build
Compiling source
 example/greeter:0.1.0

Generating executable

Generating artifacts...

 @kubernetes:Service - complete 1/1
 @kubernetes:Deployment - complete 1/1
 @kubernetes:HPA - complete 1/1
 @kubernetes:Docker - complete 2/2

7

Structure of

Parser

Analysis and Desugar

IR Generate

Code Generate

Compiler
Swan Lake

8

Parser

Analysis and Desugar

IR Generate

Code Generate

We used to have ANTLR, now we have a custom parser

Create symbols, Type check, Run plugins
Lower lambdas and other high level control flow
See CompilerPhaseRunner Class of ballerina-lang repo

Create BIR. Conditionals get lowered to GOTOs

Create JVM Bytecode. Create concurrency yield points.
Generate classes for values.

Number of compiler phases

Less phases More phases

● More people can work code base
independently

Used in Swan Lake
● Micro pass approach
● Each pass is logical simple

Used in LLVM optimizer.

● Less moving parts, simpler

Currently used in nBallerina

5 - 101 20+

9

10

Intermediate representation

Q: How are compilers phases are connected? A: IR

Why IR (instead graph)
● Easy to debug due to serialization
● Can verify

Styles of IR
● Stack based vs Register based
● Flat vs structured
● SSA Register vs Mutable Register

(defns
 ("main" (public) (function (() ()) (file "hello") (loc 3 16)
 (registers
 (r0 tmp list)
 (r1 tmp ()))
 (blocks
 (b0 (no-panic)
 (list-construct r0 "hello")
 (call (module-get ("ballerina" "io") "println") r1 r0)
 (ret ()))))))

Sample of new Ballerina IR

11

IR Styles : Stack machine vs Register base

Register base (mutable)
iload 20 %2

iadd %1 %2 %0

● More closer to source
language.

We use this format in Ballerina
(BVM, jBallerina IR, nBallerina IR)

Stack machine
iload %1

iload 20

iadd

● May produce smaller
IR.

● Used by JVM and
WebAssembly

We didn't consider this option
due to the added complexity.

Register base (SSA)
%a = add %b 20

● Better for analysis and
optimization.

● Need phi nodes

We didn't pick because not a good input
format for JVM or for LLVM
(surprisingly, due to debug info)

a = b + 20;

IR Styles : Flat vs Structured

Flat IR

loopHead:

 local.get $i

 i32.const 10

 i32.gt_s loopEnd

goto loopHead

loopEnd:

● Most popular format
● Can result in non-reducible loops

Structured IR

(loop $my_loop

 local.get $i

 i32.const 10

 i32.lt_s

 br_if $my_loop)

● Used by WebAssembly
● No GOTOs

Ballerina JVM backend

We use ASM library.
Using visitor pattern Ballerina IR and generate JVM IR

Tools to get started with JVM Code gen
● javap command. What java classes lookalike
● ASM library and ASMPlugin in Intellij

Demo !!!
● Write a compiler backend
● AST -> Java Class
● Extend the demo to win gifts

Ballerina native backend

We use LLVM library
We really on alloca and mem2reg

Tools to get started with LLVM Code gen
● Godbolt website
● Show phi nodes in action

