
Code generation and intermediate representation in Ballerina
Compiler

April 2024

Swan Lake

2

Lecture Outline
● Evolution of Ballerina Compiler
● Current structure of Ballerina Compiler
● Intermediate representations

○ Types of representations
○ Lowering to IR

2

3

Apache Synapse
XML based DSL for specifying service mediation.
Community project, heavily contributed by WSO2.

Integration Studio
Graphical editor for Apache Synapse

Jaggery Runtime
JS runtime written in Java.

Evolution : WSO2’s history in languages
WSO2 enables thousands of enterprises, including hundreds of the world’s largest corporations, top universities, and
governments, to drive their digital transformation journeys—executing more than 18 trillion transactions and managing
more than 500 million identities annually.

4

● Started out as Synapse replacement language back in late 2016.
Inspired by sequence diagrams and graphical editing.

● Initial implementation as AST interpreted language (2017)

● Internal vm (BVM) with internal ByteCode (late 2017)

● Backend/frontend separation via BIR. JVM bytecode as the backend
(late 2018).

● Swan Lake version GA release in , with major improvements and
extensive set of standard libraries and connectors (early 2022).

● Continuous updates to Swan Lake version. Currently on update 8.5

Evolution of

Compiler
Swan Lake

5

Structure of

Parser

Analysis and Desugar

IR Generate

Code Generate

Compiler
Swan Lake

Data oriented
Type-safe, declarative processing of JSON,
XML, and tabular data with
language-integrated queries.

Concurrent
Easy and efficient concurrency with
sequence diagrams and
language-managed threads without the
complexity of asynchronous functions.

Graphical
Programs have both a textual syntax and
an equivalent graphical form based on
sequence diagrams.

Features of Ballerina

type User record { int id; string name; };
…
User manu = { id: 92874, name: "manuranga" }

http:Client hello = check new ("http://hello.com");
MyGreeting greeting = check hello->get("/world");

Also see: start, wait and workers

6

7

Features of Ballerina
Flexibly typed
Uses structural types with support for
openness for static typing within a program
and for describing service interfaces.

Reliable, maintainable
Explicit error handling, static types, and
concurrency safety, combined with a
familiar, readable syntax make programs
reliable and maintainable.

Cloud native
Network primitives in the language make it
simpler to write services and run them in
the cloud.

7

type Customer record {|
 int id;
 string name;
 int account;
|};
…
Customer customer = { … };
User user = customer;
addUser(user);

> bal build
Compiling source
 example/greeter:0.1.0

Generating executable

Generating artifacts...

 @kubernetes:Service - complete 1/1
 @kubernetes:Deployment - complete 1/1
 @kubernetes:HPA - complete 1/1
 @kubernetes:Docker - complete 2/2

8

Handwritten Recursive Descent
private STNode parseFuncSignature(boolean isParamNameOptional) {

 STNode openParenthesis = parseOpenParenthesis();

 STNode parameters = parseParamList(isParamNameOptional);

 STNode closeParenthesis = parseCloseParenthesis();

 endContext(); // end param-list

 STNode returnTypeDesc = parseFuncReturnTypeDescriptor(isParamNameOptional);

 return STNodeFactory.createFunctionSignatureNode(openParenthesis, parameters,

closeParenthesis, returnTypeDesc);

}

Faster for complex grammars
Better at handling edge cases, more flexibility
Better error recovery

Parser Generator

functionSignature :

 LEFT_PARENTHESIS

 formalParameterList?

 RIGHT_PARENTHESIS

 returnParameter?;

Easier to get started
Less boilerplate

We used ANTLR until late 2020

https://github.com/ballerina-platform/ballerina
-lang/blob/v0.995.9/compiler/ballerina-lang/sr
c/main/resources/grammar/BallerinaLexer.g4

Evolution : Parser

It could be much simpler :-
https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbi
ng

https://github.com/ballerina-platform/nballerina/blob/main/compiler/modules/front
.syntax/parseExpr.bal

https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing
https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing

9

ByteCode Interpreter
while (ip < code.length) {
 Instruction instruction = code[ip];
 int[] operands = instruction.getOperands();
 int opcode = instruction.getOpcode();
 switch (opcode) {

case InstructionCodes.ICONST:
 cpIndex = operands[0];
 i = operands[1];
 sf.longRegs[i] = ((IntegerCPEntry)
constPool[cpIndex]).getValue();
 break;

case InstructionCodes.FCONST:
 cpIndex = operands[0];
 i = operands[1];
 sf.doubleRegs[i] = ((FloatCPEntry)
constPool[cpIndex]).getValue();
 break;

...
 }
}

Reasonable speed (Order of Python)
Used by Ballerina compiler until 2019

AST Interpreter
public BValue visit(BinaryExpression binExpr) {

 Expression rExpr = binExpr.getRExpr();

 BValueType rValue = rExpr.execute(this);

 Expression lExpr = binExpr.getLExpr();

 BValueType lValue = lExpr.execute(this);

 return binExpr.getEvalFunc().apply(lValue, rValue);

}

Close to source language

Compiled (to external format)

We are using JVM bytecode in Swan
Lake Version

Experimented with LLVM and
WebAssemblye

Evolution : Execution

Evolution : Compiler phases

Less phases More phases

● More people can work code base
independently

We started on the lower and keep adding
more phases

● Micro pass approach
● Each pass is logical simple

eg: LLVM optimizer.

● Less moving parts, simpler

5 - 101 20+

10

11

Parser

Analysis and Desugar

IR Generate

Code Generate

We used to have ANTLR, now we have a custom parser

Create symbols, Type check, Run plugins
Lower lambdas and other high level control flow
See CompilerPhaseRunner Class of ballerina-lang repo

Create BIR. Conditionals get lowered to GOTOs

Create JVM Bytecode. Create concurrency yield points.
Generate classes for values.

12

Intermediate representation

Q: How are compilers phases are connected? A: IR

Why IR (instead in-memory graph)
● Easy to debug due to serialization
● Can verify

Styles of IR
● Stack based vs Register based
● Flat vs structured
● SSA Register vs Mutable Register

13

IR Styles : Stack machine vs Register base

Register base (mutable)
iload 20 %2

iadd %1 %2 %0

● More closer to source
language.

We use this format in Ballerina
(BVM, jBallerina IR)

Stack machine
iload %1

iload 20

iadd

● May produce smaller
IR.

● Used by JVM and
WebAssembly

We didn't pick this option due
to the added complexity in
generation.

Register base (SSA)
%a = add %b 20

● Better for analysis and
optimization.

● Need phi nodes

We didn't pick because not a good input
format for JVM (or for LLVM
surprisingly, due to debug info)

a = b + 20;

IR Styles : Flat vs Structured

Flat IR

loopHead:

 local.get $i

 i32.const 10

 i32.gt_s loopEnd

goto loopHead

loopEnd:

● Most popular format
● Can result in non-reducible loops

Structured IR

(loop $my_loop

 local.get $i

 i32.const 10

 i32.lt_s

 br_if $my_loop)

● Used by WebAssembly
● No GOTOs

public add function(int, int) -> int {
%0(RETURN) int;
%1(ARG) int;
%2(ARG) int;

bb0 {
 %0 = %1 + %2;
 GOTO bb1;

}
bb1 {

 return;
}

}

Ballerina IR Example

public function add(int a, int b) returns int {
 return a + b;
}

● %0 is the return value
● Variables are mutable in general
● Basic blocks are identified. We use this to create safe points for yield.

○ We use 'Duff's device' like approach to compile Ballerina to support user space
threading

● IR is typed

Ballerina IR Generation
● Simple recursive depth first walk over the graph
● Users visitor pattern
● Pros : simple, local decision making
● Cons: repeated code

○ Fix: post-code gen cleanup.

https://github.com/ballerina-platform/ballerina-lang/blob/master/compiler/ballerina-lang/src/main/jav
a/org/wso2/ballerinalang/compiler/bir/BIRGen.java

JVM bytecode Generation
● Iterate BIR and generate JVM code using ASM library

● Ballerina supports user space scheduling. We generate a switch that can jump to any BasicBlock
from the top to the function. This helps us resume a function (AKA: Duff's device).

● To support Ballerina's structural typing we lower property access to Map.get() but actual
implementation of the "Map" can be a specifically generated class

https://github.com/ballerina-platform/ballerina-lang/blob/master/compiler/ballerina-lang/src/main/jav
a/org/wso2/ballerinalang/compiler/bir/codegen/methodgen/MethodGen.java

Take home task

https://github.com/manuranga/ir-gen-uom

Small task to familiarize yourself with ir generation and Ballerina language.
Send us over discord https://discord.com/invite/ballerinalang for a small gift.

https://discord.com/invite/ballerinalang

