
July 2025
Cloud Native Application Development

1

Hello!

Tharindu Weerasinghe
tharinduwe@wso2.com | Software Engineer | @ballerinalang | WSO2

Ravin Perera
ravin@wso2.com | Software Engineer | @ballerinalang | WSO2

2

mailto:anjanas@wso2.com

About this Session

3

Coming Up

What is Cloud Native Software

Fundamentals of API

API driven Development

Hands-On Session

4

What is Cloud Native Software

5

6

The Monolith: Challenges of Traditional Architecture

https://medium.com/@dollyaswin/modern-application-architectures-part-1-monolithic-architecture-90140987d0cc

Single, tightly coupled codebase.

Challenges:

● Changes in one module impact the entire system,
leading to long release cycles.

● Requires scaling the entire application, even if
only one component needs more resources.

● A failure in one part can bring down the entire
system.

● Difficult to adopt new technologies without
significant refactoring.

7

Architectural Style: Microservices

https://www.simform.com/blog/how-does-microservices-architecture-work/

An architectural approach where a large application is
built as a suite of small, independent services.

Characteristics:

● Services can be deployed without affecting
others.

● Services have minimal dependencies on each
other.

● Each service focuses on a specific business
function.

● Enables faster decision-making and development.

8

Infrastructure Foundation: Containers

https://blog.back4app.com/what-are-containers-in-cloud-computing/

● Package application code, runtime, system tools,
libraries, and settings.

● Ensure consistent environments across
development, testing, and production.

● Lightweight and isolated, sharing the host OS
kernel.

9

Virtual Machines vs Containers

https://www.simform.com/blog/vms-vs-containers/

10

Infrastructure Foundation: Cloud Platforms

https://www.cloudjournee.com/blog/aws-kubernetes-resilient-infrastructure-guide/

● On-demand access to computing, storage, and
services over the internet.

● Abstracts underlying physical infrastructure
management.

11

Development Methodology: DevOps & CI/CD

https://www.veritis.com/blog/ci-cd-services-integrate-and-automate-devops/

Integrates software development and operations.

Key Practices:

● Continuous Integration (CI): Automating code
integration and testing.

● Continuous Delivery (CD): Automating releases to
production.

● Infrastructure as Code (IaC): Managing infrastructure
with configuration files.

● Monitoring & Feedback: Real-time visibility into
application performance and health.

12

Evolution of Software Development

https://www.oracle.com/cloud/cloud-native/what-is-cloud-native/

https://www.oracle.com/cloud/cloud-native/what-is-cloud-native/

13

Service communication

https://www.zdnet.com/article/to-be-a-microservice-how-smaller-parts-of-bigger-applications-could-remake-it/

Fundamentals of API

14

What is an API?

15

○ Application Programming Interface
○ An interface for two software components to talk to each other.

What is an API?

16

How does an API work?

● Client and Server

Client: The application or user making the request.
Server: The system/service that provides the data or functionality.

17

API Call

How does an API work?

● Requests and Responses
○ Common request methods: GET, POST, PUT, DELETE
○ Response: Includes the requested data or

confirmation that an action was performed.

18

Browser Web Server

https://www.wso2.com

GET

200
HTML

How does an API work?

19

● Endpoints : URLs where the client can make requests

● Data Format : Data is exchanged mostly in JSON or XML

● Authentication: Client specific ‘API Key’

● Rate Limiting: to avoid overloading the server

● Error Handling : Common codes like 4xx and 5xx are used

200 404 500 400 201 403 503 429

API Protocols

20

● Most widely used architectural style leverages HTTP protocol

● Uses the concept of resources

● Resources can be accessed via verbs and resource paths.

Eg: GET /api/users

● Each resource has a standard format to represent data; server

sends - client understands

REST (REpresentational State Transfer)

21

Example REST API Call

22

curl -X PUT https://api.example.com / users ?role=admin\

-H “Content-Type: application/json" \

-H “Authorization: Basic am9obkBleGFtcGxlLmNvbTphYmMxMjM=” \

-d ‘{ “name": “John Doe", “email": “john@example.com"}'

 method basepath resource path

headers

 body/payload

 query parameter

Auth header

● Relatively new protocol developed by Facebook
● Fast adaptation from the major companies
● Query language for APIs
● Data is structured as a hierarchical structure
● Has a single endpoint
● Clients can request exactly what they want, server responds with exactly what

was requested

GraphQL

23

24

REST vs GraphQL

REST:

GET https://api.example.com/users/123

Response:
{
 "id": "123",
 "name": "Bob Smith",
 "email": "bob@gmail.com",
 "age": 30,
 "isActive": true,
 "profilePicture": "https://example.com/profile.jpg",
 "address": {
 "street": "1600 Pennsylvania Ave.",
 "city": "Washington, DC",
 "zip": "20500"
 }
}

GraphQL:

query {
 user(id: "123") {
 name
 profilePicture
 }
}

Response:
{
 "data": {
 "user": {
 "name": "Bob Smith",
 "profilePicture": "https://example.com/profile.jpg"
 }
 }
}

● APIs enable communication between
microservices

● Microservices use APIs to expose
functionalities

● APIs define how services interact with
each other

● They ensure loose coupling of services

APIs and Microservices

API-Driven Development

26

An approach where Application Programming Interfaces (APIs) are treated
as first-class products.

They are designed and defined before or concurrently with the
implementation of the services themselves.

Why it's crucial:

● In a microservice architecture , APIs are the primary means of
communication.

● It shifts focus from internal implementation details to external
contracts and interfaces, ensuring interoperability.

API-Driven Development

https://machine-learning-made-simple.medium.com/api-driven-development-the-necessar
y-prerequisite-to-mcps-a100cc203c52

Contract-First Design:

● Define the API (endpoints, data formats, security) using formal specs (e.g., OpenAPI) before coding.

● Enables clear team alignment, prevents integration issues.

Consumer-Centric Design:

● Design APIs based on the needs of their consumers (e.g., frontend, partners).

● Involve consumers early for feedback to ensure usability.

Documentation & Discoverability:

● APIs should be well-documented and easy to find.

● Good documentation lowers the integration barrier and can be auto-generated from specs.

Core Principles of API-Driven Design

Real-world Examples

29

Sharing a post on Facebook

30

Smartchips on GoogleDocs

Google Calendar API

Gmail API

Google Places API

31

Hands-on

32

Prerequisites

Ballerina

VSCode

VSCode extension for Ballerina

33

● Based on Microservice Architecture

○ Menu Service

○ Order Service

● APIs to
○ Create new orders
○ View all orders
○ View details of a specific order
○ View all food items in the menu

We will be building an order application…

34

35

In-memory
datastore

In-memory
datastore

Application Architecture

Ballerina Swan Lake
● Fully open-source programming language, powered by WSO2

● 6+ years of effort with 300+ contributors

● Cloud-native programming language optimized for integration

● Both textual syntax and graphical form

● Network Oriented Programming (DOP) paradigm

36

37

Ballerina is a full platform

https://x.com/sameerajayasoma/status/1813314829974950061

38

● VSCode plugin

○ Source and graphical editing

○ Debugging

● Tools for working with various protocols (REST, GraphQL, gRPC)

● Generate API documentation & test framework

● Ballerina standard library and extended library

● Ballerina Central (https://central.ballerina.io/)

○ Module sharing platform

Ballerina is a full platform

https://central.ballerina.io/

Let’s code!
Source code: https://github.com/tharindu-nw/hotel_order_service

39

https://github.com/tharindu-nw/hotel_order_service

Questions?

40

Ballerina community

● Ballerina is an open source project
https://github.com/ballerina-platform/ballerina-lang/

● Seeking open source contributors
⦿ Contribute and get rewarded
⦿ Has good first issues for external contributors

● Ballerina student engagement program
https://ballerina.io/community/student-program/

41

https://github.com/ballerina-platform/ballerina-lang/
https://ballerina.io/community/#contribute-and-get-rewarded
https://github.com/orgs/ballerina-platform/projects/369
https://ballerina.io/community/student-program/

Find out more…
● Ballerina documentation

○ Ballerina use cases : Microservices
■ ballerina.io/usecases/microservices/

○ Ballerina by example
■ ballerina.io/learn/by-example/

○ API Documentation
■ https://central.ballerina.io/ballerina-library

● Join the Ballerina community

ballerinalang WSO2 Collective @ballerinalang ballerina-lang

42

https://ballerina.io/usecases/microservices/
https://ballerina.io/learn/by-example/
https://central.ballerina.io/ballerina-library
https://discord.gg/ballerinalang
https://stackoverflow.com/collectives/wso2
https://twitter.com/ballerinalang
https://github.com/ballerina-platform/ballerina-lang

Inter-university Ballerina Hackathon

🔗 Register Now:
https://innovatewithballerina.com/

Organized by the IEEE Student Branch of University of Moratuwa 43

https://innovatewithballerina.com/

Thank you!

44

