
Ballerina for integration
Heshan Padmasiri

May 2024 1

In this presentation:

Anatomy of modern web application

Data oriented programming

Network communication

How to get started

2

Anatomy of modern web
application

3

Everything needs a backend service

4

● Almost all modern applications needs some sort of network backend
● This even includes applications that you mostly use offline

○ Text editor : setting synchronization and plugin management
○ Single player games : DRM, save file synchronization, OTA updates

● Most modern applications has multiple user facing “clients”
○ Mobile client
○ Web app
○ There may be additional integrations with other “smart gadgets” like smart

watches, smart speakers, etc.
● Users expect a unified “state” across all clients

HTTP

5

○ Hypertext Transfer Protocol
(HTTP) underpins most of our
network interactions

○ It’s a stateless protocol
following the client server
architecture

○ Message consists of a header
and body

○ Body is usually,
○ HTML (web sites)
○ JSON
○ XML

Browser Web
Server

https://www.wso2.com
GET

200
HTML

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP

REST service

6

○ Extend the HTTP on top of Representational State Transfer (REST)
architecture
○ Uniform interface
○ Client server decoupling
○ Stateless
○ Cacheability
○ Layered system architecture.
○ Code on demand (optional)

○ Use the HTTP request methods like GET, POST

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

REST service

7

Business
Logic

REST
API

Mobile Application

Web Application

Third party Application

Third party
Application

Third party
Application

REST
API

REST
API

Other API architectures

8

○ While REST is the most commonly used architecture is not the best option
all the time

○ Depending on use case
○ WebSocket : two way interactive communication
○ GraphQL: give client control over what data it receives
○ gRPC : remote procedure calls

What makes Ballerina the best options for writing network
APIs

9

○ Data oriented programming
○ Network abstractions as first class citizens
○ Effortless concurrency
○ First class tooling support
○ Connector ecosystem

Basics of

Data oriented programming

10

Importance of data

11

● All APIs do is essentially move data from place to another
○ Get requests from client
○ Request additional data from other services
○ Enrich existing data with additional data
○ Remove parts of existing data
○ Send response to client

● Therefore how we represent data makes a huge difference in language
ergonomics

Rich set of built in types

12

● In addition to usual basic
types common resource
representations such as json
and xml are also treated as
first class types.

● record as a universal data
type.

● Comparison operations works
on all value types

json jsonValue = { id: 5, value: "hello"};

xml xmlValue =

xml`<root><id>5</id><value>hello</value></root>`;

type User record {

 int id;

 string name;

};

User[] users = check io:fileReadCsv("users.csv");

User[] httpUsers = check httpClient->/users();

io:println([1, 2, 3] == [1, 2, 3]);

io:println([1, 2, 3] < [1, 5, 10, 20]);

Rich set of built in types

13

● table type when you need
lookup tables.

● SQL like query expressions for
declarative sequence creation

type User record {|

 readonly record {|

 string firstName;

 string lastName;

 |} name;

 int age;

|};

table<User> key(name) users = getUsers();

User? user = users[{firstName: "John", lastName:

"Doe"}];

Address[] user1Addresses =

from var address in addresses

join var user in users

 on address.ownerId equals user.id

where user.name == "user1"

select address;

Structural typing

● Type system based on set
theory
○ Types are sets of values and

subtype is just subset
● Define new types using set

operations
● Type relations are inferred not

explicit

14

type IntValue record {

 int value;

};

type ByteValue record {

 byte value;

};

type IntValueWithMetadata record {

 int value;

 string metadata;

};

public function main() {

 IntValueWithMetadata x = { value: 5, metadata:

"hello" };

 ByteValue y = { value: 5 };

 IntValue z = x;

 IntValue w = y;

}

Basics of

Network abstractions

15

Adding network abstractions to language

16

● We need a way to represent network abstractions in the programming
language
○ HTTP clients
○ REST service
○ Marshalling and unmarshalling

● In most languages this is done by libraries
○ Dependency management
○ Difficult to optimize
○ Weak tooling support

Mapping network abstractions to language abstractions

17

● But the biggest problem is how to map them to constructs provided by
the language
○ Meta programming in languages like Rust (macros)
○ Syntactic metadata in languages like Java (annotations)
○ DSL

● This means you have to learn two “languages”. Your programming
language + “language” of you library
○ Adds unwanted complexity

● You may have to learn multiple libraries
○ One for GraphQL
○ Another for REST
○ Serializing and deserializing data
○ HTTP client

Network constructs as first class citizens

18

● Instead of trying to retrofit network constructs to language, make them
first class citizens like classes or functions

● Since directly integrated to the language
○ All the dependencies are core language libraries
○ No need for any extra tools
○ Since compiler and runtime knows what you are doing better

chances to optimize
● Ballerina has first class support for many standards

○ https://ballerina.io/learn/by-example/ Network libraries section
○ Also has tools to that can generate code given spec (Ex. GraphQL,

OpenAPI)
● Comes with all the bells and whistles

○ Constraint validation
○ Authentication
○ Mocking, etc.

https://ballerina.io/learn/by-example/
https://ballerina.io/learn/graphql-tool/
https://ballerina.io/learn/openapi-tool/

Demo REST API + WebSocket

19

20

client

Player information
service

Image storage
service

Live score service

Player data
endpoint

Score endpoint 2

Score endpoint 1

Source code

https://github.com/heshanpadmasiri/Sabaragamuwa-Demo

Basics of

How to get started

21

How to get started

● Download ballerina at https://ballerina.io/downloads/
● For the best experience install the VSCode extension

● Learn Ballerina: https://ballerina.io/learn

● Ballerina student engagement program:
https://ballerina.io/community/student-program/

● Join the Ballerina community

22

ballerinalang WSO2 Collective @ballerinalang ballerina-lang

https://ballerina.io/downloads/
https://wso2.com/ballerina/vscode/
https://ballerina.io/learn
https://ballerina.io/community/student-program/
https://discord.gg/ballerinalang
https://stackoverflow.com/collectives/wso2
https://twitter.com/ballerinalang
https://github.com/ballerina-platform/ballerina-lang

Questions?

Thank you!
If you have any further questions, please email contact@ballerina.io or raise them in
the Ballerina Discord server.

mailto:contact@ballerina.io

