
APIs and AI-Driven Development

1

 Hello!

2

Anjana Supun

anjanas@wso2.com | Associate Technical Lead | @ballerinalang | WSO2

Dulmina Kodagoda

dulmina@wso2.com | Senior Software Engineer | @ballerinalang | WSO2

mailto:thisaru@wso2.com
mailto:thisaru@wso2.com

About this Session

3

Coming Up

4

1. API Fundamentals

2. What are REST APIs

3. What is GraphQL

4. REST vs GraphQL

5. Microservices

6. WebSockets: Hands-on Session

7. The Rewards Challenge

What is an API?

○ Application Programming Interface
○ An interface for two software components to talk to each other.
○ What data they send
○ How it's formatted
○ What responses they expect.

5

Software component Software component
Locally / Remotely

Restaurant menu

6

What is HTTP ?

77

Browser Web Server

https://www.wso2.com

GET

200
HTML

8

API Protocols

REST (REpresentational State Transfer) API

● Commonly used way of writing web APIs using HTTP.
● Uses the concept of resources
● Resources can be accessed via verbs and resource paths

9

Components of a REST API Request
● Endpoint (base path and the resource path)

The URL where the request is sent (e.g., https://api.example.com/users/123).

● HTTP Methods
Defines the type of action to perform

Method Purpose Example

GET Retrieve data from the server Fetching user information

POST Submit new data to the server Creating a new user

DELETE Remove data from the server Deleting a user

PUT Update existing data on the server Updating user details

Components of a REST API Request
● Query Parameters (Optional)

A part of the URL used to filter, sort or search data
https://api.example.com/users/123?role=admin

● Headers
Additional information about the request
E.g:

Content-Type - Specifies the data format (e.g., application/json)
Authorization - Sends a token for authentication

● Body/Payload (Optional)
Contains the data to send with the request. Used in methods like POST and
PUT.

Example Request

curl -X PUT https://api.example.com / users ?role=admin\

-H “Content-Type: application/json" \

-d ‘{ “name": “John Doe", “email": “john@example.com"}'

 method basepath resource path

headers

 body/payload

 query parameter

Components of a REST API Response
● Status Code

○ Indicates the result of the request

E.g:
200 OK: The request was successful.
404 Not Found: The resource was not found.
500 Internal Server Error: Something went wrong on the server side.
400 Bad Request: The request was invalid (e.g., missing parameters).

● Headers
Additional information about the response
E.g: Content-Type - Specifies the data format (e.g., application/json)

● Body
The data returned by the server

GET request examples

Scenario: Fetching details about a specific user

Request:

curl -X GET https://api.example.com/users/123

curl -X GET
https://api.example.com/users/123?role=admin

Response:

Status Code: 200 OK

Content-Type: “application/json"

Body:
{
 “id": “124”,
 “name": "Bob",
 “email": "bob@gmail.com"
}

POST request example

Scenario: Adding a new user

Request:

curl -X POST https://api.example.com/users \

-H "Content-Type: application/json" \

-d '{ "name": "Bob", "email": "bob@gmail.com"}'

Response:

Status Code: 201 Created

Content-Type: application/json"

Body:
{
 “id": “124”,
 “name": "Bob",
 “email": "bob@gmail.com"
}

PUT request example

Scenario: Update existing data on the server

Request:

curl -X PUT https://api.example.com/users/123 \

-H “Content-Type: application/json" \

-d '{“role": "editor"}'

Response:

Status Code: 20O OK

Content-Type: application/json"

Body:

{
 “id": “124”,
 “name": “Bob",
 “email": “bob@gmail.com",
 “role” : “editor”
}

DELETE request example

Scenario: Deleting a user

Request:

curl -X DELETE
https://api.example.com/users/123

Response:

Status Code: 200 OK

Body:
{
 "message": "User deleted successfully"
}

18

Integration

“Integration like putting
together a jigsaw puzzle.

It's when we make different
parts fit together, so the whole
thing works nicely!”

Ballerina Swan Lake

➔ Fully open-source programming language, powered by WSO2

➔ 6+ years of effort with 300+ contributors

➔ Cloud-native programming language optimized for integration

➔ Both textual syntax and graphical form

➔ Built-in data types suitable for network communication

19

Understanding Ballerina Basics

20

Understanding Ballerina Basics: Hello World!

● Execute the $ bal new hello-world to create a new Ballerina package
● Code:

● The main function is the entry point of a Ballerina program
● Execute $ bal run to run the program

21

import ballerina/io;

public function main() {

 io:println("Hello, World!");

}

● JSON: Used to send data over the

network. Union of simple basic types

● ()|boolean|int|float|decimal|string|json[]|m

ap<json>

● XML: A markup language and file format

for storing, transmitting, and

reconstructing arbitrary data

Understanding Ballerina Basics: Data Types

json profile = {

 name: "John Doe",

 age: 30,

 address: {

 city: "Colombo",

 country: "Sri Lanka"

 }

};

xml x1 = xml `<book>The Lost World</book>`;

22

● Record: A collection of specific named fields

where each field has a type for its value.

● Query Expressions: A query expression is

similar to the SQL query syntax where you can

construct a list, a mapping, a table, a stream, or

a sequence by iterating over an iterable value

Understanding Ballerina Basics: Data
type Address record {

 int number;

 string street;

 string city;

};

string[] upperNames = from var user in users

 where user.age > 28

 select user.name.toUpperAscii();

Networking in Ballerina: Services

● The service and listener are built-in constructs in Ballerina
● They provide an easy way to write network endpoints that serves client requests.

24

import ballerina/http;

service on new http:Listener(9090) {

 resource function get greeting() returns string {

 return "Hello, World!";

 }

}

Networking in Ballerina: Clients

● The client is also a built-in construct in Ballerina
● Clients provide an easy way to consume services

25

import ballerina/http;

import ballerina/io;

public function main() returns error? {

 http:Client greetingClient = check new("http://localhost:9090")

 String greeting = check greetingClient->/greeting;

 io:println(greeting);

}

Swagger/OpenAPI Specification
● A framework for describing REST APIs that supports auto-generating

documentation and code.

Why Use It?

● Provides an interactive interface for testing APIs.
● Allows service consumers to understand how to interact with it.

GraphQL (Graph Query Language)

● Relatively new protocol developed by META.
● Query language for APIs.
● Has a single endpoint and always use HTTP

POST method.

27

Nothing More Nothing Less

28

Nothing Less

Imagine an application that displays user profiles along with a list of their recent blog posts.

REST Approach:

1. Fetch User Details: Make a `GET` request to `/users/{userId}` to get basic user
information (name, email, etc.).

2. Fetch User's Posts: Make another `GET` request to `/users/{userId}/posts` to get the
user's blog posts.

This involves two separate network requests.

29

When to use REST vs GraphQL

Consider GraphQL

○ Complex, Nested Data Fetching Needs
○ Slow internet connection
○ Your Client requirements evolve rapidly

30

Monolithic vs. Microservice Architecture

31

Users Users

Products

Reviews

Monolithic Architecture Microservice Architecture

Review Application Review Application

Products

Reviews

Service 1

Service 2

Service 3

Introduction to Microservices Architecture

32

● Characteristics of Microservices
○ Autonomous
○ Specialized

● Benefits of Microservices
○ Agility
○ Flexibility of scaling
○ Easy deployment
○ Technological freedom
○ Resilience

Architecture

33
https://medium.com/startlovingyourself/microservices-vs-monolithic-architecture-c8df91f16bb4

Real-World Examples

34

Generative AI Applications

35

Retrieval Augmented Generation (RAG)

36

Vector Search

37https://medium.com/@kbdhunga/a-beginners-guide-to-similarity-search-vector-indexing-part-one-9cf5e9171976

Agents

● When you want the AI to reason and perform actions continuously.
● When you want to let the AI determine the execution order.
● When you want to maintain internal State

38

Building Blocks

● Model - The reasoning Engine

○ System Prompt

● Tools - The capabilities we give

○ Tool Name

○ Parameter Names and descriptions

How it Works

39

https://platform.openai.com/docs/guides/function-calling?api-mode=responses

Hands on Session - Agents

40

Source Code - https://github.com/xlight05/apiit_session

Questions?

Your Feedback Matters

42

https://forms.gle/TyVnqkQedJmqx31dA

Find out more…

● Learn Ballerina:
○ Ballerina By Example

■ https://ballerina.io/learn/by-example/
○ API Documentation

■ https://lib.ballerina.io/

● Join the Ballerina community

43

ballerinalang ballerina @ballerinalang ballerina-lang

https://ballerina.io/learn/by-example/
https://lib.ballerina.io/
https://discord.gg/ballerinalang
https://stackoverflow.com/questions/tagged/ballerina
https://twitter.com/ballerinalang
https://github.com/ballerina-platform/ballerina-lang

44

Thank you!
If you have any further questions, please raise them in the
Ballerina Discord server.

