
Mastering Web Backend Fundamentals - 1
Mastering Data - Data Persistence and Visualization

Hello!
Hasitha Aravinda

hasitha@wso2.com | Associate Director / Architect | @BallerinaLang | WSO2

Maryam Ziyad
maryamm@wso2.com | Technical Lead| @BallerinaLang | WSO2

Malintha Ranasinghe
malinthar@wso2.com | Senior Software Engineer | @BallerinaLang | WSO2

About This Session

Mastering Web Backend Fundamentals

Mastering Data - Data Persistence and Visualization [Today]

● Learn the importance and the basics of data and data persistence
● Discover how to persist data in various data stores with ease
● Create interactive visualizations with Ballerina, while learning the basics

Concept to Cloud - Exploring Web Development [TBA]

● Learn efficient approaches to creating REST APIs
● Write REST APIs with Ballerina
● Deploy your web application to the cloud

Application development Hackathon [TBA]

Mastering Data

"Today, every company is a
software company."

Microsoft CEO - "Satya Nadella"

Terminology

Integration
The process of combining different software
components, systems, or subsystems to work
together as a single, unified solution

Integration - Examples

● Software Integration
● System Integration
● Data Integration
● API Integration
● Middleware Integration
● Continuous Integration
● Frontend and Backend Integration

Endpoints
An entity that can send or receive messages

Endpoints - Examples

● Databases
● Cloud Service Providers

○ AWS, Azure, Google, Huawei
● SaaS Products

○ Salesforce
○ SAP

● Files

➔ Inbound and Ingress are about things coming in.
➔ Outbound and Egress are about things going out.

Protocols
A set of rules or standards used to allow devices to
communicate.

Protocols

● Transport Layer Protocols: TCP/UDP
● Web Services and APIs:

○ HTTP, gRPC, GraphQL, WebSocket, SOAP
● Data Exchange Protocols (EDI)

○ FTP, AS2, OFTP2
● Messaging Protocols

○ AMQP, MQTT, STOMP
● Database

○ Proprietary Protocols, APIs - ODBC, JDBC
● File Sharing

○ SMB, NFS
● Email

○ SMTP, IMAP, POP3

Data
Information that can be processed by a computer
system.

Data Formats

● XML
● JSON
● YAML
● TOML
● Binary
● Plain Text
● CSV
● …

Data

● Binary: Data represented in a non-human-readable format
● Textual: Data represented in a human-readable format

● Structured - Data is stored in tables of a SQL Database, Dates & time
● Unstructured - Plain text doc, audio, video
● Semi-Structured - XML and JSON

● Time-Series - Weather data, Stock Prices
● Streaming: (Bounded/Unbounded) - IoT streams, Multiplayer games data
● Multimedia: Images, audio, and video files
● …

Data Persistence
The storage of data in a way that ensures its
continuity and availability beyond the lifecycle of a
specific process or program execution.

Why is Data Persistence Important?

● Continuity of Operations
● Historical Analysis
● Legal and Regulatory Compliance
● Enhancing User Experience

Methods of Data Persistence

● Databases
○ MySQL, PostgreSQL, MongoDB, …

● Files
○ CSV, XML, JSON

● Data Warehouses
○ Amazon Redshift, Google BigQuery, Snowflake.

● Cloud Storages
○ AWS S3, Google Cloud Storage, Azure Blob

● Cloud Service and Software
○ Google Sheets

● In-memory
○ Caches, Redis

● Blockchain

Challenges in Data Persistence

● Data Integrity
● Scalability
● Security
● Performance
● Cost

Transactions

A transaction is a sequence of one or more operations (like reading, inserting,
updating, or deleting data) that is executed as a single unit.

Either all operations within the transaction are completed successfully, or none
of them.

● Atomicity
● Consistency
● Isolation
● Durability

Why Transactions are Essential for Data Persistence

● Protecting Data Integrity
● Handling System Failures
● Simplifying Complex Operations
● Supporting Concurrent Operations
● Ensuring Business Logic

Example
Data Persistence in Databases

Methods of Interaction with a database

● Direct Database Interaction
○ Native SQL (Structured Query Language) Queries
○ Create, Read, Update, Delete (CRUD)
○ Pros:

■ More control over query optimization.
■ Often provides better performance for complex queries.

○ Cons:
■ Can lead to SQL injection vulnerabilities if not handled properly.
■ Tightly couples application logic with database-specific SQL dialects.
■ Harder to migrate to another database system.

Methods of Interaction with a database

● ORM (Object-Relational Mapping) Based Interaction
○ Entities and Persistence Layers
○ Examples: Hibernate / OpenJPA (Java), Entity Framework (C#), Sequelize

(JavaScript), Bal Persist (Ballerina)
○ Pros:

■ Provides a more intuitive and object/data-oriented way to interact with the
database.

■ Reduces the risk of SQL injection, as the ORM often handles query creation.
■ Can be database agnostic, allowing easier migrations between different

database systems.
○ Cons:

■ Sometimes there is a performance overhead.
■ For very complex queries, ORM might not be as efficient as hand-tuned SQL.

Points to Consider

● Specific requirements of the project.
● The expertise of the development team.
● The trade-offs between direct control and abstraction.

○ Direct database interaction is often favored for high-performance applications
○ ORM-based interaction, on the other hand, is popular for its productivity

benefits and for projects where database independence is a key consideration.

Ballerina Persist Tool

Bal Persist offers

● Simplified Database Interaction
● Developer Productivity
● Data Mapping
● Database independence
● Consistency and Integrity

Bal Persist - Highlights

● Define entities using record syntax
● An Entity must contain at least one identifier field.
● Relationship between two entities.

○ 1-1
○ 0-n
○ n-n

● Visualize data model as an ER diagram
● Data model validation and Code Actions support

Bal Persist - Design

See entities as REST resources

/<Resource>/<key>

Basic REST operations

● GET (Default Operation) - Retrieve entity data
● POST - Create/Submit an entity
● PUT - Update an existing entity
● DELETE - Remove an entity

Demo

Let's build a simple library system

Entities

● Books
● Authors
● Members
● Borrowings

Relationships

● An Author can have zero or more Books.
● A Book has an Author.
● A Member can have zero or more Borrowings.
● A Book can be borrowed by zero or one Member at a time.

Why Ballerina?

Challenges

● Robustness Principle - "Be conservative in what you send, be liberal in
what you accept"

● Working With Data
● Type Safety

○ Convert to application-specific data types
○ A type-safe way to manipulate data

● Transactions

The best way to manipulate data
is to represent data as data

Source
https://www.manning.com/books/data-oriented-programming

https://www.manning.com/books/data-oriented-programming

Plain Data

● Pure data, independent of processing that might be applied to the data
● Messages exchanged by network protocols are represented by plain data
● Can be directly serialized to and from JSON in a simple, natural way

Data and Object Oriented Programming

● Encapsulation and behavior-centric approach

● Great for apps with complicated logic with several boundaries
○ Defining and defending boundaries
○ Ensures data integrity and restricts direct access.
○ Ideal for monoliths, allows multiple teams to collaborate

● But, does OOP work for transferring data?
○ Serialization and deserialization can be costly.
○ Not always efficient for batch operations or data streaming.

Data Oriented Programming

● Focus on efficient manipulation, representation, and storage of data

● Model data as (immutable) data
○ Separate code from Data

● Great for handling network interactions

Handling Data in Ballerina

https://www.infoq.com/articles/ballerina-data-oriented-language/

Source
 https://www.infoq.com/articles/ballerina-data-oriented-language/

https://www.infoq.com/articles/ballerina-data-oriented-language/

JSON

Java records

Ballerina records

Algebraic Types / Union Types - Java

Algebraic Types / Union Types - Ballerina

Query expressions in Ballerina

Consuming a service in Ballerina

Data validation at the boundary

Abstractions allow developers to
work with higher-level concepts
rather than getting bogged down in
the nitty-gritty of how those
concepts are realized.

Learn Ballerina

1. https://ballerina.io/learn

2. WSO2 Self-Paced Training

https://lms.wso2.com/collections/ballerina

https://ballerina.io/learn
https://lms.wso2.com/collections/ballerina

Programing Challenge

First 10 eligible submissions get free vouchers for Ballerina Certification and
Ballerina branded swag.

Steps

1. Star https://github.com/ballerina-platform/ballerina-lang
2. Extend the library system by adding one more entity.
3. Put your solution into a public GitHub repo.
4. Submit your solution in https://forms.gle/JtsR3z2Gk9ARVtPXA

https://github.com/ballerina-platform/ballerina-lang
https://forms.gle/JtsR3z2Gk9ARVtPXA

Programing Challenge

● Extend the library system solution by adding the following entity.
○ Reviews

➢ Many times, after reading a book, members want to leave feedback or a
review.

➢ A review has a rating (0-10) and a comment (string).
➢ A member can leave zero or more reviews.
➢ A book can have zero or more Reviews.

● The program should
○ Create 10 different books with authors.
○ Create 5 members and each with at least 1 borrowings.
○ Create 5 reviews.
○ Find and Print list of books that did borrowed by members.

Join with
Ballerina

Community

Discord : https://discord.gg/ballerinalang

SO : : https://stackoverflow.com/questions/tagged/ballerina

Twitter https://twitter.com/ballerinalang

GitHub : https://github.com/ballerina-platform

https://discord.gg/ballerinalang
https://stackoverflow.com/questions/tagged/ballerina
https://twitter.com/ballerinalang
https://github.com/ballerina-platform

Q & A

