
Ballerina Type System
James Clark

Enterprise Service Bus

● Workhorse of enterprise integration
● XML-based DSL for working with network services

○ ESB products typically include graphical editor
● Uses components written in Java
● Real-world applications often require a combination of the DSL and Java
● Typically licensed on a per-server basis
● Overall not a good fit for the cloud era

Language concept

● Replace Java/XML DSL combo with a single programming language
● A proper programming language with everything expected of a modern

programming language
● Batteries included: libraries, package manager, build system, test system,

documentation system, IDE support
● Cloud native: designed from the outset for the cloud
● Should be easy for programmers familiar with Java/C#/JavaScript to get

started
● Not a JVM language

Business model

● Developed by WSO2
○ founded 2005, current headcount ~850, engineering mostly in Sri Lanka
○ enterprise integration, open source

● Ballerina language free
○ including "batteries"

● Make money off cloud service built on top of Ballerina
● Long-term project

Type system goals

● Describe the types of variables and functions used within the program
● Allow mutation in a similar style to Java or JavaScript
● Describe the data that network services send and receive

○ Good fit with JSON is important
● Cognitive load that the type system features impose on the programmer must

be justified by the assistance that they provide in writing correct, maintainable
programs

○ cannot expect the programmer to invest a lot of time mastering a complex type system in
order to write a 100-line program

Big idea: semantic subtyping

● Not novel: pioneered by XDuce and CDuce
● Types denotes sets of values
● Subtyping relationship on types defined by subset relationship on the sets

they denotes
● Works well for describing tree-structured data such as JSON
● Presents implementation challenges
● Implies structural typing

Basic types and unions

boolean b = true;

int n = 42;

boolean|int v1 = false;

boolean|int v2 = 17;

● Universe of values is partitioned into basic
types

● Semantics of operations on a value determined
by basic type of value

● Most important kind of type descriptor is one
that corresponds to a complete basic type

● boolean basic type contains two values: true
and false

● int basic type represents 64-bit signed
integers: contains 264 values

● Union type descriptor describes a type as a
union of two other types

Type definitions

type B boolean;

type I int;

type BI boolean|int;

● Type definitions give names to types
● Like typedef in C
● Name is not part of the type

Conditional type narrowing

type BI boolean|int;

function toInt(BI v) returns int {
 if v is int {
 return v; // v is int
 }
 else if v { // v is boolean
 return 1;
 }
 else {
 return 0;
 }
}

● Programs typically work with a union by
using the is operator

● When a variable is used with is in a
condition, the type of the variable is
narrowed

● Kotlin and TypeScript have similar features

Singletons

type ONE 1;

const R = 0;
const G = 1;
const B = 2;
type RGB R|G|B;

RGB color = R;

const T = true;
const F = false;
// Completely equivalent to boolean
type B T|F;

● ONE is a singleton type: type that denotes
a set with exactly one member

● const declaration gives a name to a
value known at compile-time

● Name defined with const can be used in
two ways

○ as a type in a type descriptor context
○ as a value in an expression context

● Union can be used with singleton type just
as with any other type

Nil and optional

// T1 and T2 are equivalent
type T1 int?;
type T2 int|();

function f(int? v) returns int {
 if v == () {
 return 0;
 }
 else {
 return v; // v has type int
 }
}

● Nil type contains a single value ()
● Optional type is represented as union with

nil
● Functions that do not explicitly return a

value return nil
● Conditional type narrowing happens with

==, != as well as is

string and enum

type Operator "+"|"-"|"*"|"/"|"%";

Operator op = "+";
string s = op;

enum Color { RED, GREEN, BLUE }

// equivalent to

const RED = "RED";
const GREEN = "GREEN";
const BLUE = "BLUE";
type Color RED|GREEN|BLUE;

● string type - immutable sequence of
Unicode code points

● singleton strings are used for
enumerations

● enum declaration provides a shorthand

Floating point: values vs shapes

float x = 1.0;

const ONE = 1.0d;

ONE d1 = 1.0d;
ONE d2 = 1.00d;

d1 == d2 // true
d1 === d2 // false

● float type is 64-bit binary floating point
● decimal type is 128-bit decimal floating

point
● Decimal values include precision
● == operator for decimal ignores precision
● Shape is equivalence class defined by ==

equivalence relation
● Types are actually sets of shapes rather

than sets of values
● === operator tests for identical value
● Similar issue with float zero: +0 and -0

are == but not ===

Lists

int[] x = [1, 2, 3];

type Location [string, int];

Location loc = ["foo.bal", 17];

// Relies on 0 having singleton type
string file = loc[0];
int line = loc[1];
int k = 1;
string|int v = loc[k];

● List basic type represents an ordered list
of values

● Array type descriptor describes a list using
a single type for all members

● Tuple type descriptor can specify separate
type for each member

● Tuples can end with repeatable member
e.g. [T,R...]

● T[] equivalent to [T...]
● Array and tuple types are two ways of

describing the same values: fits with
JSON, which has single syntax for ordered
list of values

List subtyping

type Coord [float, float];
Coord c = [1.0, 1.0];

type OptCoord [float?, float?];
// Coord is a subtype of OptCoord
OptCoord oc = c;

type Location [string,int];
// Location is a subtype of SI
type SI (string|int)[];

// T1 and T2 are equivalent
type T1 [int|string,int|string];
type T2 [int,int]|[string,string]
 |[int,string]|[string,int];

● Array and tuple types are covariant in their
member types

● Obvious when you think in terms of sets of
values

● A tuple is a subtype of an array of the
union of its member types

Mappings
map<int> countryCode = {
 US: 1,
 UK: 44,
 TH: 66
};

type Person record {|
 record {|

string first;
string last;

 |} name;
 int id;
|};

Person p = {
 name: {
 first: "James",
 last: "Clark"
 },
 id: 123
};

● Mapping type represents mapping from
strings to values

● map type descriptor describes mapping
using single type for all members

● record type descriptor describes
mapping using separate type for each
member

● Map and record types are two ways of
describing the same values: fits with JSON
which has single syntax for maps and
records

Optional fields

type Person record {|
 string name;
 int yearOfBirth?;
 string countryOfResidence?;
|};

Person p = {
 name: "James Clark",
 countryOfResidence: "Thailand"
};

● Fields can be optional

Open records

type Person record {|
 string name;
 int id;
 string...;
|};

Person p = {
 name: "James Clark",
 id: 123,
 "preferredBeverage": "coffee"
};

// T1 and T2 are equivalent
type T1 map<int>;
type T2 record {| int...; |};

● Records can be open, allowing fields other
than those named

● The quotes are required in the mapping
constructor for extra fields to avoid typos
with optional fields

Recursive types

type LL record {|
 int value;
 LL? next;
|};

type json ()
 | boolean
 | int
 | float
 | decimal
 | string
 | json[]
 | map<json>;

type Bad int|Bad; // invalid

● Types can be recursive
● Recursive reference must traverse a type

constructor
● Denotes infinite set of values
● Built-in recursive json type corresponds

to values that can be represented in JSON
syntax

anydata type

type anydata ()
 | boolean
 | int
 | float
 | decimal
 | string
 | xml
 | anydata[]
 | map<anydata>
 | table<map<anydata>>;

// R1 and R2 are equivalent
type R1 record { string name; };
type R2 record {|
 string name;
 anydata...;
|};

● anydata represents "plain old data" -
data independent of any program

● == operator is defined for anydata
● anydata = json + tables + xml
● xml is a sequence type (like string) -

similar model to XQuery
● table is similar to an array of records that

allows records to be looked up by key that
is part of the record

● record { } is shorthand for a record
open to anydata

Types not in anydata

● error - error handling in Ballerina is based on returning error values
● function - module level functions and closures
● object - combines fields and methods
● typedesc - runtime type
● future - used for concurrency
● handle - used for FFI
● any - any type other than error

Object types
type Incrementable object {
 function increment();
};

class Integer {
 int n = 0;
 function increment() {
 self.n += 1;
 }
}

Incrementable inc = new Integer();
Incrementable inc = object {
 int n = 0;
 function increment() {
 self.n += 1;
 }
};

● Object types work uniformly with other
basic types

● Service objects and client objects are
using for providing and consuming
network services

● Parameter/return types of methods on
service/client objects describe format of
network messages

Distinct types

type X distinct object {};
type Y distinct object {};

type IoError distinct error;
type IllegalArgError distinct error;

● object types and error types can both be
distinct

● Each occurrence of distinct in a source
module has a unique id, which includes
the id of the module

● Values belonging to a distinct type are
tagged with the distinct type's unique id

● Provides functionality of nominal typing
within a structural typing framework

● Similar concept to branded in Modula 3

Mutation

Mutable structures: shape vs value

string[] x = ["hello"];
// y == x && y === x
string[] y = x;
// x == z && x !== z
string[] z = ["hello"];
// y[0] is changed, but z[0] is not
x[0] = "goodbye";

type LL record {|
 LL? next;
|};

LL ll = { next: () };
ll.next = ll; // cycle

● Mutation means values have an identity
● === and == are different
● === means stored in same location
● Two structures are == if they have the

same keys and values for every key is ==
● Type is set of shapes, where shape is

equivalence class under ==
● For structures, type is effectively a set of

trees
● A graph with a cycle has s shape that is an

infinite tree

Aliasing + mutation + covariance = problem

string[] v1 = ["s"]; // 1: create a list

string?[] v2 = v1; // 2: OK because of covariance

// v2 now refers to the same structure as v1

v2[0] = (); // 3: OK because string? allows nil

string s = v1[0]; // 4: Type of v1[0] should be string but it's not!

Solution: inherent types

● A mutable structural value includes an inherent type
● The inherent type constrains how the value can be mutated
● Constraint enforced at runtime

○ Conscious trade-off to reduce complexity in the type system
○ Type system still provides compile-time guarantees e.g. v having type int[] guarantees that

when you get a member from v it will have type int
○ Compile-time guarantees do not extend to stores e.g. v having type int[] does not guarantee

that you can store a value of type int in v
● Similar to how Java arrays work

Inherent type violations are runtime errors

string[] v1 = ["s"]; // Compile-time context for list constructor requires string[]
 // Causes constructed value to have inherent type string[]

// This would be compile-time error
// v1[0] = ()

string?[] v2 = v1; // v2 has static type string?[] but refers to value
 // with inherent type string[]

v2[0] = (); // Mutating member 0 to have value () is incompatible with
 // inherent type of v2, so results in runtime error

Inherent type complicates things

● Matching on value and matching on type are different operations
● Conversion from json to user-defined type cannot be done as a downcast
● Type narrowing works unintuitively with mutable values
● Programmer model is more complex than types are sets of values

Value match vs type match

Two relationships between a mutable structural value and a type

● A value v looks like a type T iff the current shape of v is a member of the set
of shapes denoted by T - value match

● A value v belongs to a type T iff v will always looks like T no matter how v is
mutated - (inherent) type match

match statement

json employee = {
 type: "tech",
 id: 1234
};

match employee {
 { type: "tech" } => {
 techCount += 1;
 }
}

● is operator does type match
● match statement does value

match
● More powerful version of a

switch statement

Converting from json

// Built-in function
function fromJsonWithType(
 json v,
 typedesc<anydata> t = <>)
 returns t|error;

// Use like this
type Point record {|
 float x;
 float y;
|};

json j = { x: 1, y: 2 };
Point|error p = j.fromJsonWithType();

● fromJsonWithType constructs a new value
which is (roughly) equal to v but has the
inherent type t

● Also does numeric conversions
● typedesc<T> is value representing a type

that is a subtype of T
● The type of the return value depends on the

value of the t argument (dependent typing)
● Value of t argument defaulted from

contextually expected type
● Usually this is done automatically based on

the declared parameter types of methods of
service objects

Readonly type goals

● Foundation for concurrency safety
● Reduce negative impact of inherent types
● Enable table datatype
● Don’t complicate the language for beginners

Immutable values

● Structural values (lists and mappings) can be constructed as immutable
● Immutable values cannot be mutated after construction
● Immutability is deep: members of immutable lists and mappings are required

to be immutable
● Some basic types are always immutable: nil, boolean, int, float, decimal,

string, error, function
● Immutable structures do not need an inherent types: belongs to is the same

as looks like

readonly type

readonly x = 1;

// v is constructed as immutable
readonly & int[] v = [1, 2, 3];

type Point readonly & record {
 int x;
 int y;
};

// p is constructed as immutable
Point p = { x: 1, y: 2 };

● Value belongs to readonly type only if it
is immutable

● Works in conjunction with intersection
operator &

● Mapping and list constructors construct
immutable values when contextually
expected type is readonly

What readonly does and doesn't do

● readonly&T is a subtype of T
● A type such as any[] says nothing about mutability
● An attempted store to a member of immutable structure may be detected at

runtime not compile-time
● In C, the const in a parameter const T* is a constraint on the callee not to

mutate via that pointer
● In Ballerina, the readonly in a parameter readonly&T is a constraint on

the caller to provide a value that cannot be changed

Semantics of readonly are designed for concurrency

● Value being readonly guarantees that it can never be mutated
● Further guaranteed that no value reachable through a readonly value can be

mutated
● When a variable has type readonly, we know at compile-time that the value

can be safely passed to a function running on a separate thread

isolated functions and objects

● Goal with concurrency safety is to determine when it is safe to run a function
on a separate thread

● A function defined as isolated can access mutable data only through its
parameters: similar to pure function but specialized for concurrency

● isolated for functions complements readonly for data
● An object defined as isolated encapsulates its mutable state and provides

compile-time guarantee that all concurrent access to that state is locked
● Within a module, isolated can be inferred: this allows the compiler to

identify when services can safely be run in parallel and guide the user in
adding the locks needed to enable this

Narrowing problem

type N [int]; // 1-tuple
type S [string];
type NS [int|string];

function f(N|S x) returns string {
 if x is N {
 return x[0].toString();
 }
 else {
 return x[0]; // COMPILE ERROR
 }
}

function g() {
 NS x = [42];
 f(x);
}

● NS is equivalent to N|S
● In the else branch, all we know is that the

inherent type of x is not a subset of N
● Does this imply the inherent type of x is a

subset of S?
● No: (X ⊆ N ∪ S) ∧ (X ⊈ N) ⇏ X ⊆ S
● This is bad: users will be surprised to get a

compile error here
● Unavoidable consequence of combination

of semantic subtyping and mutability

Narrowing with readonly

type N readonly & [int]; // 1-tuple
type S readonly & [string];
type NS readonly & [int|string];

function f(N|S x) returns string {
 if x is N {
 return x[0].toString();
 }
 else {
 return x[0]; // Ok
 }
}

function g() {
 NS x = [42];
 f(x);
}

● Everything works properly with readonly
● x is N will be true: it is testing whether

the shape of x is a member of N

table type

type Sym record {
 readonly string name;
 Value value;
};

type SymTab table<Sym> key(name);

● Works uniformly with lists and mappings:
record can be a member of multiple tables

● Maintains the invariant that each member of
the table is uniquely identified within the
table by its key

● Key can come from one or more fields
● Key type can be any subtype of anydata
● Key fields must be readonly: both the field

and the value stored in the field are
immutable

● Powerful enough to make it unnecessary to
have application-specific collection types in
most cases

Subtyping algorithm overview

● To test whether S is a subtype of T, test if set difference of S and T is empty
● To test whether a type T is empty:

○ split up into disjoint sets, each a subtype of a single uniform type
○ basic types that are sometimes readonly are split into readonly/read-write uniform types
○ test whether each of these sets is empty

● Subtypes have representation specific to uniform type
○ must be closed under union, intersection difference

● Easy for simple types: e.g. integers are represented as a list of ranges
● Structures are represented as binary decision diagram representing logical

combinations (and, or, not) of atomic structures in disjunctive normal function
● Testing emptiness for structures searches for a way it can be non-empty

Implementation status

● Current generation: jBallerina
○ Written in Java
○ Compiles to JVM bytecode
○ Evolved from when type system was very different: implements syntactic approximation to

semantic subtyping
● Next generation: nBallerina

○ Written in Ballerina (bootstrap with jBallerina)
○ Compiles to LLVM; eventually to JVM also
○ Initial implementation focus is semantic subtyping
○ Will take several years before it can fully replace jBallerina

● Plan to backport semantic typing implementation

Future type features

● Generics
● Refinement types

○ Regular expressions
● Negation !T

Further information

https://ballerina.io/ Ballerina web site

G. Castagna, Covariance and Contravariance: a fresh look at an old issue (a
primer in advanced type systems for learning functional programmers), 2020
https://arxiv.org/abs/1809.01427

https://github.com/ballerina-platform/nballerina Implementation of semantic
subtyping for Ballerina in Ballerina

https://ballerina.io/
https://arxiv.org/abs/1809.01427
https://github.com/ballerina-platform/nballerina

