Ballerina Type System

James Clark

Enterprise Service Bus

e \Workhorse of enterprise integration

XML-based DSL for working with network services
o ESB products typically include graphical editor

Uses components written in Java

Real-world applications often require a combination of the DSL and Java
Typically licensed on a per-server basis

Overall not a good fit for the cloud era

Language concept

e Replace Java/XML DSL combo with a single programming language

e A proper programming language with everything expected of a modern
programming language

e Batteries included: libraries, package manager, build system, test system,
documentation system, IDE support

e Cloud native: designed from the outset for the cloud

e Should be easy for programmers familiar with Java/C#/JavaScript to get
started

e Not a JVM language

Business model

e Developed by WSO2

o founded 2005, current headcount ~850, engineering mostly in Sri Lanka
o enterprise integration, open source

e Ballerina language free
o including "batteries"

e Make money off cloud service built on top of Ballerina
e Long-term project

Type system goals

e Describe the types of variables and functions used within the program
e Allow mutation in a similar style to Java or JavaScript

e Describe the data that network services send and receive
o Good fit with JSON is important

e Cognitive load that the type system features impose on the programmer must
be justified by the assistance that they provide in writing correct, maintainable

programs
o cannot expect the programmer to invest a lot of time mastering a complex type system in
order to write a 100-line program

Big idea: semantic subtyping

e Not novel: pioneered by XDuce and CDuce

e Types denotes sets of values

e Subtyping relationship on types defined by subset relationship on the sets
they denotes

e \Works well for describing tree-structured data such as JSON

e Presents implementation challenges

e Implies structural typing

Basic types and unions

boolean b = true;

int n = 42;

boolean|int vl = false;

boolean|int v2 = 17;

Universe of values is partitioned into basic
types

Semantics of operations on a value determined
by basic type of value

Most important kind of type descriptor is one
that corresponds to a complete basic type
boolean basic type contains two values: true
and false

int basic type represents 64-bit signed
integers: contains 254 values

Union type descriptor describes a type as a
union of two other types

Type definitions

type B boolean; e Type definitions give names to types
. e Like typedefin C
type I int; e Name is not part of the type

type BI boolean|int;

Conditional type narrowing

type BI boolean]|int; e Programs typically work with a union by
using the is operator

function tolInt(BI v) returns int { e \When a variable is used with is in a

if v is int {

return v; // v dis dint condition, the type of the variable is

} narrowed

else if v { // v is boolean e Kotlin and TypeScript have similar features
return 1;

}

else {
return 0;

}

}

Singletons

type ONE 1;

const R = 03
const G = 1;
const B 23
type RGB R|G|B;

RGB color = R;

const T = true;

const F false;

// Completely equivalent to boolean
type B T|F;

ONE is a singleton type: type that denotes
a set with exactly one member

const declaration gives a name to a
value known at compile-time

Name defined with const can be used in

two ways
o as atype in a type descriptor context
o as avalue in an expression context

Union can be used with singleton type just
as with any other type

Nil and optional

// T1l and T2 are equivalent
type T1 int?;
type T2 int|();

function f(int? v) returns int {

}

if v == () {
return 0;

}

else {

}

return v; // v has type int

Nil type contains a single value ()
Optional type is represented as union with
nil

Functions that do not explicitly return a
value return nil

Conditional type narrowing happens with
==, !=aswellas is

string and enum

type Operator "+"|"-"|"x"|"/"|"%";
Operator op = "+";

string s = op;

enum Color { RED, GREEN, BLUE }

// equivalent to

const RED = "RED";

const GREEN = "GREEN";

const BLUE = "BLUE";
type Color RED|GREEN|BLUE;

string type - immutable sequence of
Unicode code points

singleton strings are used for
enumerations

enum declaration provides a shorthand

Floating point: values vs shapes

float x = 1.0;
const ONE = 1.0d;

ONE d1i
ONE d2

1.0d;
1.00d;

dl == d2 // true
dl === d2 // false

float type is 64-bit binary floating point
decimal type is 128-bit decimal floating
point

Decimal values include precision

== operator for decimal ignores precision
Shape is equivalence class defined by ==
equivalence relation

Types are actually sets of shapes rather
than sets of values

=== operator tests for identical value
Similar issue with float zero: +0 and -0
are == but not ===

Lists

int[] x = [1, 2, 3]; e List basic type represents an ordered list
. . . of values
type Location [string, intl; e Array type descriptor describes a list using
Location loc = ["foo.bal", 17]; a single type for all members
e Tuple type descriptor can specify separate
// Relies on 0 having singleton type type for each member

string file = loc[0]; .
int line = loc[1]: e Tuples can end with repeatable member

int k = 1; eg. [T,R...]
string|int v = loc[k]; e T[] equivalentto [T...]
e Array and tuple types are two ways of
describing the same values: fits with
JSON, which has single syntax for ordered
list of values

List subtyping

type Coord [float, float];
Coord ¢ = [1.0, 1.0];

type OptCoord [float?, float?];
// Coord is a subtype of OptCoord
OptCoord oc = c;

type Location [string,int];
// Location is a subtype of SI
type SI (string|int)[];

// Tl and T2 are equivalent
type T1 [int|string,int|string];
type T2 [int,int]|[string,string]

| [int,string]|[string,int];

Array and tuple types are covariant in their
member types

Obvious when you think in terms of sets of
values

A tuple is a subtype of an array of the
union of its member types

Mappings

maﬁg'.in’]c-> countryCode = { e Mapping type represents mapping from
UK: 44, strings to values
};TH' 66 e map type descriptor describes mapping
type Person record {| using single type fo.r all memb_ers
record {| e record type descriptor describes
§Eﬂﬂ§ {;gif’ mapping using separate type for each
|} name; member
int 1id;
BE e Map and record types are two ways of
Person p = { describing the same values: fits with JSON
name: { i i
first: "James", which has single syntax for maps and
, last: "Clark" records
id: 123

+s

Optional fields

type Person record {|
string name;
int yearOfBirth?;
string countryOfResidence?;

B

Person p = {
name: "James Clark",
countryOfResidence: "Thailand"

s

Fields can be optional

Open records

type Person record {|
string name;
int id;
string...;

B

Person p = {
name: "James Clark",
id: 123,

"preferredBeverage": '"coffee"

s

// Tl and T2 are equivalent

type T1 map<int>;

type T2 record {| int...;

Records can be open, allowing fields other
than those named

The quotes are required in the mapping
constructor for extra fields to avoid typos
with optional fields

Recursive types

type LL record {|
int value;
LL? next;

BE

type json ()

boolean
int

float
decimal
string
json[]
map<json>;

type Bad 1int|Bad; // invalid

Types can be recursive

Recursive reference must traverse a type
constructor

Denotes infinite set of values

Built-in recursive json type corresponds
to values that can be represented in JSON
syntax

anydata type

type anydata ()

boolean

int

float

decimal

string

xml

anydatal]
map<anydata>
table<map<anydata>>;

// R1 and R2 are equivalent
type R1 record { string name; };
type R2 record {]

string name;

anydata...;

BE

anydata represents "plain old data" -
data independent of any program

== operator is defined for anydata
anydata = json + tables + xml

xml is a sequence type (like string) -
similar model to XQuery

table is similar to an array of records that
allows records to be looked up by key that
is part of the record

record { 1} is shorthand for a record
open to anydata

Types not in anydata

error - error handling in Ballerina is based on returning error values
function - module level functions and closures

object - combines fields and methods

typedesc - runtime type

future - used for concurrency

handle - used for FFI

any - any type other than error

Obiject types

type Incrementable object {
function increment();

}s

class Integer {
int n = 0;
function 1ncrement() {

}

Incrementable 1inc
Incrementable 1inc

}s

}

self.n += 1;

int n = 0;
function 1ncrement() {

}

self.n += 1;

new Integer();
object {

Object types work uniformly with other
basic types

Service objects and client objects are
using for providing and consuming
network services

Parameter/return types of methods on
service/client objects describe format of
network messages

Distinct types

e object types and error types can both be
distinct
e Each occurrence of distinct in a source

module has a unique id, which includes
type IoError distinct error; the id of the module
type IllegalArgError distinct error;

type X distinct object {};
type Y distinct object {};

e Values belonging to a distinct type are
tagged with the distinct type's unique id

e Provides functionality of nominal typing
within a structural typing framework

e Similar concept to branded in Modula 3

Mutation

Mutable structures: shape vs value

string[] x = ["hello"]; e Mutation means values have an identity
/]y == x && y === X e === and == are different

j’;r;”fgzy&; §3 o e === means stored in same location
string[] z = ["hello"]; e Two structures are == if they have the

// y[0@] 1is changed, but z[0] is not same keys and values for every key is ==
x[0] = "goodbye"; e Type is set of shapes, where shape is

equivalence class under ==

type LL record {| e For structures, type is effectively a set of

LL? next; trees
|33 e Agraph with a cycle has s shape that is an
infinite tree

LL 1L = { next: () };
ll.next = 1l; // cycle

Aliasing + mutation + covariance = problem

string[] vl = ["s"]; // 1l: create a list

string?[] v2 = vi1; // 2: OK because of covariance

// v2 now refers to the same structure as vl

v2[0] = (); // 3: OK because string? allows nil

string s = v1[0]; // 4: Type of v1[0] should be string but it's not!

Solution: inherent types

e A mutable structural value includes an inherent type
e The inherent type constrains how the value can be mutated

e Constraint enforced at runtime
o Conscious trade-off to reduce complexity in the type system
o Type system still provides compile-time guarantees e.g. v having type int[] guarantees that
when you get a member from v it will have type int
o Compile-time guarantees do not extend to stores e.g. v having type int[] does not guarantee
that you can store a value of type intin v

e Similar to how Java arrays work

Inherent type violations are runtime errors

string[] vl = ["s"]; // Compile-time context for list constructor requires string[]
// Causes constructed value to have inherent type string[]

// This would be compile-time error

/1 vile] = ()

string?[] v2 = vi1; // v2 has static type string?[] but refers to value
// with inherent type stringl[]

v2[0] = (); // Mutating member 0 to have value () is incompatible with
// inherent type of v2, so results in runtime error

Inherent type complicates things

Matching on value and matching on type are different operations
Conversion from json to user-defined type cannot be done as a downcast
Type narrowing works unintuitively with mutable values

Programmer model is more complex than types are sets of values

Value match vs type match

Two relationships between a mutable structural value and a type

e Avalue v looks like a type T iff the current shape of v is a member of the set
of shapes denoted by T - value match

e Avalue v belongs to a type T iff v will always looks like T no matter how v is
mutated - (inherent) type match

match statement

json employee = {
type: "tech",
id: 1234

b5

match employee {
{ type: "tech" } => {
techCount += 1;
}
}

is operator does type match
match statement does value
match

More powerful version of a
switch statement

Converting from json

// Built-in function
function fromJsonWithType(

fromJsonWithType constructs a new value
which is (roughly) equal to v but has the

json v, _
typedesc<anydata> t = <>) inherent type t
returns t|error; e Also does numeric conversions
// Use like this e typedesc<T> is value representing a type
type Point record {| that is a subtype of T
float x; e The type of the return value depends on the
float y; _
1}; value of the t argument (dependent typing)

e Value of t argument defaulted from
contextually expected type

e Usually this is done automatically based on
the declared parameter types of methods of
service objects

json j = { x: 1, y: 2 };
Point|error p = j.fromJsonWithType();

Readonly type goals

Foundation for concurrency safety

Reduce negative impact of inherent types
Enable table datatype

Don’t complicate the language for beginners

Immutable values

e Structural values (lists and mappings) can be constructed as immutable

e Immutable values cannot be mutated after construction

e Immutability is deep: members of immutable lists and mappings are required
to be immutable

e Some basic types are always immutable: nil, boolean, int, float, decimal,
string, error, function

e Immutable structures do not need an inherent types: belongs to is the same
as looks like

readonly type

readonly x = 1;

// v 1is constructed as immutable
readonly & 1int[] v = [1, 2, 3];

type Point readonly & record {
int x;
int y;

b5

// p 1s constructed as immutable
Point p = { x: 1, y: 2 };

Value belongs to readon'ly type only if it
is immutable

Works in conjunction with intersection
operator &

Mapping and list constructors construct
immutable values when contextually
expected type is readonly

What readonly does and doesn't do

e readonly&T is asubtypeof T

e Atype such as any[] says nothing about mutability

e An attempted store to a member of immutable structure may be detected at
runtime not compile-time

e InC, the const in a parameter const Tx* is a constraint on the callee not to
mutate via that pointer

e In Ballerina, the readonly in a parameter readonly&T is a constraint on
the caller to provide a value that cannot be changed

Semantics of readonly are designed for concurrency

e \alue being readonly guarantees that it can never be mutated

e Further guaranteed that no value reachable through a readonly value can be
mutated

e \When a variable has type readonly, we know at compile-time that the value
can be safely passed to a function running on a separate thread

isolated functions and objects

e (Goal with concurrency safety is to determine when it is safe to run a function
on a separate thread

e A function defined as isolated can access mutable data only through its
parameters: similar to pure function but specialized for concurrency

e 1isolated for functions complements readonly for data

e An object defined as isolated encapsulates its mutable state and provides
compile-time guarantee that all concurrent access to that state is locked

e Within a module, isolated can be inferred: this allows the compiler to
identify when services can safely be run in parallel and guide the user in
adding the locks needed to enable this

Narrowing problem

type N [int]; // 1-tuple
type S [string];
type NS [int|string];

function f(N|S x) returns string {
if x is N {
return x[0].toString();
}
else {
return x[0]; // COMPILE ERROR

}
}

function g() {
NS x = [42];
f(x);

NS is equivalentto N | S

In the else branch, all we know is that the
inherent type of x is not a subset of N
Does this imply the inherent type of x is a
subset of S?

No: XENUS)AXIN)XES
This is bad: users will be surprised to get a
compile error here

Unavoidable consequence of combination
of semantic subtyping and mutability

Narrowing with readonly

type N readonly & [int]; // 1l-tuple
type S readonly & [string];
type NS readonly & [int]|string];

function f(N|S x) returns string {
if x is N {
return x[0].toString();
}
else {
return x[0]; // Ok
}
}

function g() {
NS x = [42];
f(x);

Everything works properly with readonly
x s N will be true: it is testing whether
the shape of x is a member of N

table type

type Sym record {
readonly string name;
Value value;

}s

type SymTab table<Sym> key(name);

Works uniformly with lists and mappings:
record can be a member of multiple tables
Maintains the invariant that each member of
the table is uniquely identified within the
table by its key

Key can come from one or more fields

Key type can be any subtype of anydata
Key fields must be readonly: both the field
and the value stored in the field are
immutable

Powerful enough to make it unnecessary to
have application-specific collection types in
most cases

Subtyping algorithm overview

e To test whether S is a subtype of T, test if set difference of S and T is empty
e To test whether a type T is empty:

o split up into disjoint sets, each a subtype of a single uniform type
o basic types that are sometimes readonly are split into readonly/read-write uniform types
o test whether each of these sets is empty

e Subtypes have representation specific to uniform type
o must be closed under union, intersection difference

e Easy for simple types: e.g. integers are represented as a list of ranges

e Structures are represented as binary decision diagram representing logical
combinations (and, or, not) of atomic structures in disjunctive normal function

e Testing emptiness for structures searches for a way it can be non-empty

Implementation status

e Current generation: jBallerina
o Written in Java
o Compiles to JVM bytecode

o Evolved from when type system was very different: implements syntactic approximation to

semantic subtyping
e Next generation: nBallerina
o Written in Ballerina (bootstrap with jBallerina)
o Compiles to LLVM; eventually to JVM also
o Initial implementation focus is semantic subtyping
Will take several years before it can fully replace jBallerina

Plan to backport semantic typing implementation

(@)

Future type features

e (Generics

e Refinement types
o Regular expressions

e NegationIT

Further information

https://ballerina.io/ Ballerina web site

G. Castagna, Covariance and Contravariance: a fresh look at an old issue (a
primer in advanced type systems for learning functional programmers), 2020
https://arxiv.org/abs/1809.01427

https://github.com/ballerina-platform/nballerina Implementation of semantic
subtyping for Ballerina in Ballerina

https://ballerina.io/
https://arxiv.org/abs/1809.01427
https://github.com/ballerina-platform/nballerina

