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Enterprise Service Bus

● Workhorse of enterprise integration
● XML-based DSL for working with network services

○ ESB products typically include graphical editor
● Uses components written in Java
● Real-world applications often require a combination of the DSL and Java
● Typically licensed on a per-server basis
● Overall not a good fit for the cloud era



Language concept

● Replace Java/XML DSL combo with a single programming language
● A proper programming language with everything expected of a modern 

programming language
● Batteries included: libraries, package manager, build system, test system, 

documentation system, IDE support
● Cloud native: designed from the outset for the cloud
● Should be easy for programmers familiar with Java/C#/JavaScript to get 

started
● Not a JVM language



Business model

● Developed by WSO2
○ founded 2005, current headcount ~850, engineering mostly in Sri Lanka
○ enterprise integration, open source

● Ballerina language free
○ including "batteries"

● Make money off cloud service built on top of Ballerina
● Long-term project



Type system goals

● Describe the types of variables and functions used within the program
● Allow mutation in a similar style to Java or JavaScript
● Describe the data that network services send and receive

○ Good fit with JSON is important
● Cognitive load that the type system features impose on the programmer must 

be justified by the assistance that they provide in writing correct, maintainable 
programs

○ cannot expect the programmer to invest a lot of time mastering a complex type system in 
order to write a 100-line program



Big idea: semantic subtyping

● Not novel: pioneered by XDuce and CDuce
● Types denotes sets of values
● Subtyping relationship on types defined by subset relationship on the sets 

they denotes
● Works well for describing tree-structured data such as JSON
● Presents implementation challenges
● Implies structural typing



Basic types and unions

boolean b = true;

int n = 42;

boolean|int v1 = false;

boolean|int v2 = 17;

● Universe of values is partitioned into basic 
types

● Semantics of operations on a value determined 
by basic type of value

● Most important kind of type descriptor is one 
that corresponds to a complete basic type

● boolean basic type contains two values: true 
and false

● int basic type represents 64-bit signed 
integers: contains 264 values

● Union type descriptor describes a type as a 
union of two other types



Type definitions

type B boolean;

type I int;

type BI boolean|int;

● Type definitions give names to types
● Like typedef in C
● Name is not part of the type



Conditional type narrowing

type BI boolean|int;

function toInt(BI v) returns int {
  if v is int {
    return v;  // v is int
  }
  else if v {  // v is boolean
    return 1;
  }
  else {
    return 0;
  }
}

● Programs typically work with a union by 
using the is operator

● When a variable is used with is in a 
condition, the type of the variable is 
narrowed

● Kotlin and TypeScript have similar features



Singletons

type ONE 1;

const R = 0;
const G = 1;
const B = 2;
type RGB R|G|B;

RGB color = R;

const T = true;
const F = false;
// Completely equivalent to boolean
type B T|F;

● ONE is a singleton type: type that denotes 
a set with exactly one member

● const declaration gives a name to a 
value known at compile-time

● Name defined with const can be used in 
two ways

○ as a type in a type descriptor context
○ as a value in an expression context

● Union can be used with singleton type just 
as with any other type



Nil and optional

// T1 and T2 are equivalent
type T1 int?;
type T2 int|();

function f(int? v) returns int {
  if v == () {
    return 0;
  }
  else {
    return v; // v has type int
  }
}

● Nil type contains a single value ()
● Optional type is represented as union with 

nil
● Functions that do not explicitly return a 

value return nil
● Conditional type narrowing happens with 

==, != as well as is



string and enum

type Operator "+"|"-"|"*"|"/"|"%";

Operator op = "+";
string s = op;

enum Color { RED, GREEN, BLUE }

// equivalent to

const RED = "RED";
const GREEN = "GREEN";
const BLUE = "BLUE";
type Color RED|GREEN|BLUE;

● string type - immutable sequence of 
Unicode code points

● singleton strings are used for 
enumerations

● enum declaration provides a shorthand



Floating point: values vs shapes

float x = 1.0;

const ONE = 1.0d;

ONE d1 = 1.0d;
ONE d2 = 1.00d;

d1 == d2 // true
d1 === d2 // false

● float type is 64-bit binary floating point
● decimal type is 128-bit decimal floating 

point
● Decimal values include precision
● == operator for decimal ignores precision
● Shape is equivalence class defined by == 

equivalence relation
● Types are actually sets of shapes rather 

than sets of values 
● === operator tests for identical value
● Similar issue with float zero: +0 and -0 

are == but not ===



Lists

int[] x = [1, 2, 3];

type Location [string, int];

Location loc = ["foo.bal", 17];

// Relies on 0 having singleton type
string file = loc[0];
int line = loc[1];
int k = 1;
string|int v = loc[k];

● List basic type represents an ordered list 
of values

● Array type descriptor describes a list using 
a single type for all members

● Tuple type descriptor can specify separate 
type for each member

● Tuples can end with repeatable member 
e.g. [T,R...]

● T[] equivalent to [T...]
● Array and tuple types are two ways of 

describing the same values: fits with 
JSON, which has single syntax for ordered 
list of values



List subtyping

type Coord [float, float];
Coord c = [1.0, 1.0];

type OptCoord [float?, float?];
// Coord is a subtype of OptCoord
OptCoord oc = c;

type Location [string,int];
// Location is a subtype of SI
type SI (string|int)[];

// T1 and T2 are equivalent
type T1 [int|string,int|string];
type T2 [int,int]|[string,string]
        |[int,string]|[string,int];

● Array and tuple types are covariant in their 
member types

● Obvious when you think in terms of sets of 
values

● A tuple is a subtype of an array of the 
union of its member types



Mappings
map<int> countryCode = {
  US: 1,
  UK: 44,
  TH: 66
};

type Person record {|
  record {|

string first;
string last;

  |} name;
  int id;
|};

Person p = {
   name: {
      first: "James",
      last: "Clark"
   },
   id: 123
};

● Mapping type represents mapping from 
strings to values

● map type descriptor describes mapping 
using single type for all members

● record type descriptor describes 
mapping using separate type for each 
member

● Map and record types are two ways of 
describing the same values: fits with JSON 
which has single syntax for maps and 
records



Optional fields

type Person record {|
   string name;
   int yearOfBirth?;
   string countryOfResidence?;
|};

Person p = {
   name: "James Clark",
   countryOfResidence: "Thailand"
};

● Fields can be optional



Open records

type Person record {|
  string name;
  int id;
  string...;
|};

Person p = {
   name: "James Clark",
   id: 123,
   "preferredBeverage": "coffee"
};

// T1 and T2 are equivalent
type T1 map<int>;
type T2 record {| int...; |};

● Records can be open, allowing fields other 
than those named

● The quotes are required in the mapping 
constructor for extra fields to avoid typos 
with optional fields 



Recursive types

type LL record {|
   int value;
   LL? next;
|};

type json ()
          | boolean
          | int
          | float
          | decimal
          | string
          | json[]
          | map<json>;

type Bad int|Bad; // invalid
  

● Types can be recursive
● Recursive reference must traverse a type 

constructor
● Denotes infinite set of values
● Built-in recursive json type corresponds 

to values that can be represented in JSON 
syntax



anydata type

type anydata ()
             | boolean
             | int
             | float
             | decimal
             | string
             | xml
             | anydata[]
             | map<anydata>
             | table<map<anydata>>;

// R1 and R2 are equivalent
type R1 record { string name; };
type R2 record {|
   string name;
   anydata...;
|};

● anydata represents "plain old data" - 
data independent of any program

● == operator is defined for anydata
● anydata = json + tables + xml
● xml is a sequence type (like string) - 

similar model to XQuery
● table is similar to an array of records that 

allows records to be looked up by key that 
is part of the record

● record { } is shorthand for a record 
open to anydata



Types not in anydata

● error - error handling in Ballerina is based on returning error values
● function - module level functions and closures
● object - combines fields and methods
● typedesc - runtime type
● future - used for concurrency
● handle - used for FFI
● any - any type other than error



Object types
type Incrementable object {
   function increment();
};

class Integer {
   int n = 0;
   function increment() {
     self.n += 1;
   }
}

Incrementable inc = new Integer();
Incrementable inc = object {
   int n = 0;
   function increment() {
     self.n += 1;
   }
};

● Object types work uniformly with other 
basic types

● Service objects and client objects are 
using for providing and consuming 
network services

● Parameter/return types of methods on 
service/client objects describe format of 
network messages



Distinct types

type X distinct object {};
type Y distinct object {};

type IoError distinct error;
type IllegalArgError distinct error;

● object types and error types can both be 
distinct

● Each occurrence of distinct in a source 
module has a unique id, which includes 
the id of the module

● Values belonging to a distinct type are 
tagged with the distinct type's unique id

● Provides functionality of nominal typing 
within a structural typing framework

● Similar concept to branded in Modula 3



Mutation



Mutable structures: shape vs value

string[] x = ["hello"];
// y == x && y === x
string[] y = x;
// x == z && x !== z
string[] z = ["hello"];
// y[0] is changed, but z[0] is not
x[0] = "goodbye";

type LL record {|
  LL? next;
|};

LL ll = { next: () };
ll.next = ll; // cycle

● Mutation means values have an identity
● === and == are different
● === means stored in same location
● Two structures are == if they have the 

same keys and values for every key is ==
● Type is set of shapes, where shape is 

equivalence class under ==
● For structures, type is effectively a set of 

trees
● A graph with a cycle has s shape that is an 

infinite tree



Aliasing + mutation + covariance = problem

string[] v1 = ["s"];   // 1: create a list

string?[] v2 = v1;     // 2: OK because of covariance

// v2 now refers to the same structure as v1

v2[0] = ();            // 3: OK because string? allows nil

string s = v1[0];      // 4: Type of v1[0] should be string but it's not!



Solution: inherent types

● A mutable structural value includes an inherent type
● The inherent type constrains how the value can be mutated
● Constraint enforced at runtime

○ Conscious trade-off to reduce complexity in the type system
○ Type system still provides compile-time guarantees e.g. v having type int[] guarantees that 

when you get a member from v it will have type int
○ Compile-time guarantees do not extend to stores e.g. v having type int[] does not guarantee 

that you can store a value of type int in v
● Similar to how Java arrays work



Inherent type violations are runtime errors

string[] v1 = ["s"]; // Compile-time context for list constructor requires string[]
                     // Causes constructed value to have inherent type string[]

// This would be compile-time error
// v1[0] = ()

string?[] v2 = v1;   // v2 has static type string?[] but refers to value
                     // with inherent type string[]

v2[0] = ();          // Mutating member 0 to have value () is incompatible with
                     // inherent type of v2, so results in runtime error



Inherent type complicates things

● Matching on value and matching on type are different operations
● Conversion from json to user-defined type cannot be done as a downcast
● Type narrowing works unintuitively with mutable values
● Programmer model is more complex than types are sets of values



Value match vs type match

Two relationships between a mutable structural value and a type

● A value v looks like a type T iff the current shape of v is a member of the set 
of shapes denoted by T - value match

● A value v belongs to a type T iff v will always looks like T no matter how v is 
mutated - (inherent) type match



match statement

json employee = {
   type: "tech",
   id: 1234
};

match employee {
  { type: "tech" } => {
     techCount += 1;
  }
}
     

● is operator does type match
● match statement does value 

match
● More powerful version of a 

switch statement



Converting from json

// Built-in function
function fromJsonWithType(
     json v,
     typedesc<anydata> t = <>)
   returns t|error;

// Use like this
type Point record {|
  float x;
  float y;
|};

json j = { x: 1, y: 2 };
Point|error p = j.fromJsonWithType();

● fromJsonWithType constructs a new value 
which is (roughly) equal to v but has the 
inherent type t

● Also does numeric conversions
● typedesc<T> is value representing a type 

that is a subtype of T
● The type of the return value depends on the 

value of the t argument (dependent typing)
● Value of t argument defaulted from 

contextually expected type
● Usually this is done automatically based on 

the declared parameter types of methods of 
service objects



Readonly type goals

● Foundation for concurrency safety
● Reduce negative impact of inherent types
● Enable table datatype
● Don’t complicate the language for beginners



Immutable values

● Structural values (lists and mappings) can be constructed as immutable
● Immutable values cannot be mutated after construction
● Immutability is deep: members of immutable lists and mappings are required 

to be immutable
● Some basic types are always immutable: nil, boolean, int, float, decimal, 

string, error, function
● Immutable structures do not need an inherent types: belongs to is the same 

as looks like



readonly type

readonly x = 1;

// v is constructed as immutable
readonly & int[] v = [1, 2, 3];

type Point readonly & record {
  int x;
  int y;
};

// p is constructed as immutable
Point p = { x: 1, y: 2 };

● Value belongs to readonly type only if it 
is immutable

● Works in conjunction with intersection 
operator &

● Mapping and list constructors construct 
immutable values when contextually 
expected type is readonly



What readonly does and doesn't do

● readonly&T is a subtype of T
● A type such as any[] says nothing about mutability 
● An attempted store to a member of immutable structure may be detected at 

runtime not compile-time
● In C, the const in a parameter const T* is a constraint on the callee not to 

mutate via that pointer
● In Ballerina, the readonly in a parameter readonly&T is a constraint on 

the caller to provide a value that cannot be changed



Semantics of readonly are designed for concurrency

● Value being readonly guarantees that it can never be mutated
● Further guaranteed that no value reachable through a readonly value can be 

mutated
● When a variable has type readonly, we know at compile-time that the value 

can be safely passed to a function running on a separate thread



isolated functions and objects

● Goal with concurrency safety is to determine when it is safe to run a function 
on a separate thread

● A function defined as isolated can access mutable data only through its 
parameters: similar to pure function but specialized for concurrency

● isolated for functions complements readonly for data
● An object defined as isolated encapsulates its mutable state and provides 

compile-time guarantee that all concurrent access to that state is locked
● Within a module, isolated can be inferred: this allows the compiler to 

identify when services can safely be run in parallel and guide the user in 
adding the locks needed to enable this



Narrowing problem

type N [int];  // 1-tuple
type S [string];
type NS [int|string]; 

function f(N|S x) returns string {
   if x is N {
     return x[0].toString();
   }
   else {
     return x[0]; // COMPILE ERROR
   }
}

function g() {
   NS x = [42];
   f(x);
}

● NS is equivalent to N|S
● In the else branch, all we know is that the 

inherent type of x is not a subset of N
● Does this imply the inherent type of x is a 

subset of S?
● No: (X ⊆ N ∪ S) ∧ (X ⊈ N) ⇏ X ⊆ S
● This is bad: users will be surprised to get a 

compile error here
● Unavoidable consequence of combination 

of semantic subtyping and mutability 



Narrowing with readonly

type N readonly & [int];  // 1-tuple
type S readonly & [string];
type NS readonly & [int|string]; 

function f(N|S x) returns string {
   if x is N {
     return x[0].toString();
   }
   else {
     return x[0]; // Ok
   }
}

function g() {
   NS x = [42];
   f(x);
}

● Everything works properly with readonly
● x is N will be true: it is testing whether 

the shape of x is a member of N



table type

type Sym record {
   readonly string name;
   Value value;
};

type SymTab table<Sym> key(name);

● Works uniformly with lists and mappings: 
record can be a member of multiple tables

● Maintains the invariant that each member of 
the table is uniquely identified within the 
table by its key

● Key can come from one or more fields
● Key type can be any subtype of anydata
● Key fields must be readonly: both the field 

and the value stored in the field are 
immutable

● Powerful enough to make it unnecessary to 
have application-specific collection types in 
most cases



Subtyping algorithm overview

● To test whether S is a subtype of T, test if set difference of S and T is empty
● To test whether a type T is empty:

○ split up into disjoint sets, each a subtype of a single uniform type
○ basic types that are sometimes readonly are split into readonly/read-write uniform types
○ test whether each of these sets is empty

● Subtypes have representation specific to uniform type
○ must be closed under union, intersection difference

● Easy for simple types: e.g. integers are represented as a list of ranges
● Structures are represented as binary decision diagram representing logical 

combinations (and, or, not) of atomic structures in disjunctive normal function
● Testing emptiness for structures searches for a way it can be non-empty



Implementation status

● Current generation: jBallerina
○ Written in Java
○ Compiles to JVM bytecode
○ Evolved from when type system was very different: implements syntactic approximation to 

semantic subtyping
● Next generation: nBallerina

○ Written in Ballerina (bootstrap with jBallerina)
○ Compiles to LLVM; eventually to JVM also
○ Initial implementation focus is semantic subtyping
○ Will take several years before it can fully replace jBallerina

● Plan to backport semantic typing implementation



Future type features

● Generics
● Refinement types

○ Regular expressions
● Negation !T



Further information

https://ballerina.io/ Ballerina web site

G. Castagna, Covariance and Contravariance: a fresh look at an old issue (a 
primer in advanced type systems for learning functional programmers), 2020 
https://arxiv.org/abs/1809.01427

https://github.com/ballerina-platform/nballerina Implementation of semantic 
subtyping for Ballerina in Ballerina

https://ballerina.io/
https://arxiv.org/abs/1809.01427
https://github.com/ballerina-platform/nballerina

